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Supplementary Material

In this document, section [I{and the appendices contain working notes from the preliminary work on the
transformations between Jacobi coordinates and mixed Jacobi coordinates for the ABC model described
in the main paper, as well as more brief discussions on Delves and APH hypersperical coordinates and
tangent sphere coordinates. These are included as a guide for helpful reference. This preliminary work
is important for the more general many-body work planned for realistic calculations as these types of
coordinate transformations, with collision vector coordinates associated with DVR basis functions for
each arrangement, will be needed for the more complicated case. Test programs under development for
3-dimensional finite mixed-basis volume integrals and surface transformations may be found in public
repository https://github.com/ElliottKasoar/fortran/tree/parallel.

Section [2| gives some further details and further plots of the {p,p,p} calculations described in the main
paper. Section 3| gives further details of how short range (strong) interactions may be included in the
calculations.

1 COORDINATE SYSTEMS AND TRANSFORMATIONS
1.1 Jacobi coordinates: useful relations

For three bodies with masses M, where o = a, b, ¢, and positions relative to an origin fixed in the lab
., Jacobi coordinates are defined by [1]]:

These coordinates, illustrated in Figure 3 of the main paper, are most convenient when particle « is free,
while particles $ and ~ are bound together [1]].

Total system mass, M, and three-body reduced mass, p:

M = M, + Mg + M,

(Mo MM\ 2
= M

Internal reduced masses, m,,, and reduced channel masses, 1, [2]:
Mo = MﬁMfy/(MB + M,y)

pra = Mo MgM.,/(maM)

Mass scaled coordinates [[1]]:
S a = daRoz

Sq = d;lfra
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where d,, are dimensionless scaling factors

Angle between Jacobi vectors [3]]:

Yo = cos ™! Sa - 8 = cos ! Ra-7a
¢ SaSa Rarea

Transform between arrangements [2]:

(;i) - (—MB(MA + M;T?éé‘;\f?A}_B]\f‘B}WA)(MB + Mc) —MC/MlB + MC)) (-,'F;Cc)

:( —My/(Ma + Mc) —1 ) ('rb)
Mc(MA—i—MB—i—Mc)/(B—G—C)(MA—i—Mc) —MB/MB+MC) Ry

(5)-mon(3)

~ cos(xpa)l  sin(xpa)l
T(XBa) = (_ sin(x ga)1 COS(Xﬁa)l)

or for scaled coordinates [/1]]

where T is a 6x6 matrix

where 1 is the 3x3 unit matrix.

For the symmetric definition of the three coordinates, the kinematic angles x g, for cyclic order are
negative, obtuse angles [1]

I
COSXBa = —
o T dpdg M,
) 1
S Xga = — a5
«
with useful identities including
Xaa =0
Xaop = —Xpa

Xap + XBy T Xya = 2

Transforming between BF axis systems [1]]:

(%) -me o ()




where the superscript represents the axis system used and R(2 < 1) is a 2x2 block diagonal matrix with
the rotation matrix J2 on each diagonal

cos ¥ cos © cos ® — sin Wsin ¢ sinWVecosO®Ocos® +cos¥Usin® —sin© cos d
R=|—-cosWUcosOsin® —sinVWcos® —sinVcosOsin® +cosWcos® sinOsinP
cos ¥ sin © sin ¥ sin © cos ©

where U, © and ¢ are Euler angles that carry system 1 into system 2.
A 3D volume element d7 can be defined for a variety of integration variables [4]:
dr = riRi sin Yo drodRody,
12, R2, $in g drordRoydy o

2.2 oo -
Tel oy SINY oo dTadr o d oo

(

where 7,/ 1s the angle between R, and R, and Yo'« 18 the angle between 7, and 7. Similarly, integrals
may be defined using different coordinates [2]:

T 2 2w T
/ / dYa sinva/ d@a/ d\Ifa/ d©, sin O,
0 0 0 0 0
00 T 3/2 roc0 +7
/ drary, / Ao SNy = ( ) / dRgR} / Sin Yasd7as
0 0 0 0

where 7 depends on whether 7,3 > 0 or < 0. ro, 78, Ya, Vg in terms of (Rq, Rg, Vo) [2]:

Hala!
mama/

3/2

) R2R2,sin Yo/ dRadR oy d g
R o

dsrado R, = drari

Haltp

B 2 2 T 1/2
Ta = [ (E) + (ﬁ) +2RQRB COS Yo f
o (0% (6}
i M’Y mB M7m5
- 11/2
rg = U (R’B)Z—l—(Ra)Q—i—QRﬁRa COS 7, /
h g I M, My M. mg aﬁ_
R R
cosVa = S9n(V8a)Ha (Va + m—i cos ’yag)/ra
v
cosyg = sgn(Yap)iip A o C0STap ) [ T
0 «

1.1.1

Finite integrals transformations from mixed to single Jacobi coordinates

We want to interface the inner region with the two external regions (eventually Hy + H and products,
but first) H; + p and Pn + H. We can define the two R-matrix boundaries as R, = A, and Rg = Ag,
from which we can use the PFARM code to propagate to asymptotic distances and fit to K-matrices (phase
shifts), transforming to Ry, 7o,V and Rg, 73,74 at the R, and Rg boundaries respectively.
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At the R, = A, boundary:

Aa Aﬂ 0a5 ,U Iu _3/2 Ao [¢7% ea,mam
/ dR.R? / dRgR} / Vo5 SN Va5 = ( a 5) / dRoR? / dror? / Ao SN Y
0 0 0 mamg 0 0

ea,min

R A

“a = fa <M ¥ m—f3>
Y

where

O, min and 04 maqe can be obtained by respectively maximising and minimising:

o [ R R ra\> [ Ra\?
cos 0o = 5gn(780) — [ —= + cos~, — 2 cosVas £ (—a> + (—a> cos2 v — 1)
« ( Ba T M'y af M'y af Lo ]w7 ( af

Similarly, at the Rg = Ag boundary:

Aao A/g 904,3 _3/2 Aﬁ apg eﬁ,max
. Halts 2 2 .
dR 32/ dR 32/ Ao SN Yap = (—> / dRsR / drgr / dvygsinbp
/0 o 0 g b 0 ’Yaﬂ ’Yaﬂ mamﬂ 0 g g 0 g & 0 IYB

B,min
Ry A
“ = Hp (MﬂY * ma)

03 min and 6 4, can be obtained by respectively maximising and minimising:

where

us [ Rg Rg T8 2 Rg 2 5
costlg = sgn(’Ya,B)—rﬁ A + oS Vg — 3 CO87as + _MB + A (cos?yap — 1)
v v v

See Appendix 2] for examples of transformations at coordinates that may used for integration
limits. We may illustrate the geometrical constraints on -y, limits in a single arrangement arising
from the transformed mixed-basis limits using the program jacobi.f90 under development at
https://github.com/ElliottKasoar/fortran/tree/parallel. The progam calculates the correct limits on the
fly and compares results for test integrals (using both Simpson’s rule and Monte Carlo techniques. With
integral limits taken to be 0 < R, < 3,0 < Rg < 5,0 < v, < 7, Fig. shows the variation of 0y 1in
and 0q, maz With r,, for a typically large R, value (around R, =2.7) and Fig.[S2|shows the the restricted
variation of 0q min and 0, max With R,, for a typically large r, value (around r, > 6). The preliminary
3-dimensional plot Fig. [S3|is included for completeness and has some noise at 7, = 0 and r,, = 8 which
will be corrected.

1.1.2 Finite integrals transformations from single to mixed Jacobi coordinates
Transforming from (R, 7o, Ya) to (Ra, Rg, Yap):

Aa Aoy O ,U ,U 3/2 Aa A[ﬁ eaﬁ,maac
/ dRaRi/ drari/ dve Sin vy, = ( o 5) / dRaRi/ dRﬂR%/ dyop Sin Va3
0 0 0 mamﬁ 0 0 0

af,min
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Transforming from (Rg,73,75) to (Ra, R3,Yas):

Aﬂ ag 05 3/2 A5 AO‘ gaﬁ,maw
. Haflp 2 2 .
dR RQ/ dr 7’2/ dvygsinvyg = ( ) / dRsR / dR,R / d sin
/0 P 0 a 0 1B S8 mamg 0 BB 0 R Tap S Yap

aff,min

See Appendix [3|for examples of transformations of coordinates that may used for integration limits.

1.1.3 Transformation of surface amplitudes at the boundary

In a general R-matrix calculation with boundary ag, surface amplitudes are defined as

~L., INRAN
Qg zk_ <(I> |\Ij >r aop
where I represents the conserved channel quantum numbers, @{ are channel functions, \IJII; are basis states
for the scattering wavefunction, and the prime on the Dirac brackets means that integration is carried out
over all space and spin coordinates except the radial coordinate, 7.

The surface amplitudes will be calculated in the inner region, and so in our case will be defined for mixed
Jacobi coordinates. However, the propagation of the R-matrix in the external region will be carried out in
single Jacobi coordinates. A transformation of the surface amplitudes at the boundary will therefore be
necessary in order to obtain

—1,,1 Ty
g Wi, = <(I) |\Il >

r=agp

where the further primes indicate equivalent functions in single Jacobi coordinates.

Since a basis state, |b;), may be written in terms of an expansion of another complete basis, |a,, ):

N
[br) = D lan) {anbr)
n=1

the transformed amplitudes may be written as
-1, I r'ngsl INNTE
aol zk? - Z<(I) /’(I) >r ao <(I) ’\I] >r ao
— Z (I)F/|(I)F r 0 @ —1 Ek

and so
r INTEIN r
Zk{ - Z <q) ll(I) >’r’ ag Wy

n

1.2 Delves hyperspherical coordinates: useful relations

While the hyperradius is shared between all arrangements, the five hyperangles and axes are those of one
of three possible arrangements, and so the three arrangements are not treated symmetrically [1]].

hyperradius, p, and Delves hyperangle, 0p,, [1]:

p= (S5 )
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Op, = tan"(sq4/Sa)

with four space-fixed or body-fixed angles completing the set. Note that unlike 0p_ and v, (in the BF
system), p is shared by all three Jacobi coordinates, i.e.

p= (S2+S )1/2 (52 )1/2 (SQ—FS )1/2
Transforming from hyperspherical coordinates to Jacobi [3]:
Sa = pcosfp,

Sq = psinfp,

/dSads :/ ds 52/ dsqs /dS /dsa
/ dpp/ dfp,, sin? (20p,,) /dS /dsa

dS,dée = sindg, dig, dps, sind,, dd,, des,

Integration:

where in the SF system

and in the BF system
dSyds, = dW¥, sin ©,dO,dP,, sin yodv,

where ¥ and ¢ are spherical polar angles of their respective subscripted vectors, ¥, © and ¢ are Euler
angles, and ,, is the angle between S, and s, such that both angular integrations cover (47)? sr.

1.2.1 Coordinate transformations for finite integrals

Pmax emaw Aa Ao
/ dpp® / dfp, sin®(20p,) = 4 / dSqS> / dsqs2
0 0 0 0

Ay = Pmaaz COS Omaz

where

Qo = Pmazx S Omaz

1.3 APH coordinates
1.3.1 Notes

Adiabatically adjusting, principal axes hyperspherical (APH) coordinates: (p, 0, xi, ag, 5g,7¢g)- The
BF( axes are fixed on the instantaneous principle axes of inertia, and are related to the BF, axes by a
rotation about their common BF y axis. The internal coordinates treat all arrangements equally and swing
smoothly during the course of the reaction [1].




1.3.2 Transformation to Jacobi coordinates

In terms of scaled Jacobi coordinates [/1]]:

p= (S )

. 2 B 28@ * Sa

Sln( Xa) - \/<S§ — 53)2 + (2511 . Sa)2
2 .2

COS(QXQ) _ Sa Sa

\/(Sgc —52)? + (284 - 54)?

V(52— 52)> + (284 - 50)?
2505 Sin v,

tanf =

where xo = Xi — Xa: (i.e. the three choices of « are equivalent and differ only in origin), and p and 6 are
both independent of .

Obtaining Jacobi coordinates from APH coordinates [1]:

So = %\/1 + sin @ cos(2x)

Sq = L\/l — sin f cos(2x)

V2

COS Vo =

sin 6 sin(2xq)
\/1 — sin? 0 cos2(2y)

Changing of variables for full integration:

1 9 ™ w/2 2 0 2w
/dSadsa =16 ; dp,o5/ dxa/o d@sin?&/o daQ/O dfg SinﬁQ/O dg

where aq, B¢ and 7 are Euler angles and the integration over X, covers configuration space twice to
handle inversion, which is taken into account through the normalisation.

1.3.3 Transforming to Delves hyperspherical coordinates

As is the case for all hyperspherical coordinate systems, the Delves hyperradius, pp, and APH hyperradius,

pApH are equal:
PD = PAPH

and hence both are otherwise referred to as p.

Rotational frame transformations may be used to convert between the two sets of hyperangles. 3¢, is the
rotation about the common BF y axis that carries the B F,, axes into the BF() axes system:

S SIN X SIN Yq

sin 5@ =
° Q
Sa €OS Xa + Sq SIN Xq COS Vo
cos g, = 0
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where

Q= \/sa sin? X 8in? Y4 + (Sa €OS Xa + Sa SiN Xa €OSYq )2

The Delves hyperangle can be written in terms of APH angles:
Op, = tan"(s4/Sa)

-l (,0/\/5\/1 — sin 0003(2)())
p/V/2+/1 + sin fcos(2x)

1 1 — sinfcos(2x)
= tan -
1 + sin fcos(2x)
Change of variables for integration:

1 ™ w/2 2w ™ 2m 1 /2 )
—/ an/ d@sinQ@/ daQ/ dfo sinﬁQ/ dyg = —/ dfp,, sin2(20DQ)/dSa/d§a
16 J _« 0 0 0 0 4 Jo

1.4 Tangent-sphere coordinates

1.4.1 Notes

These coordinates are designed to smoothly connect the (Delves) hyperspherical coordinates in the
rearrangement region to Jacobi coordinates in the non-rearrangement region, providing a single propagation
variable that varies continuously and smoothly between the two regions. This eliminates the need for
algebraic or numerical matching procedures [3]].

For each arrangement, there are orthogonal coordinates (v, Wq, Ya ), Where 7y, is the rotational angle of
the diatom, as in Delves hyperspherical coordinates and Jacobi coordinates [3l].

1.4.2 Useful relations

The hyperradius p;,q, 1s the outer constant-p contour of the (Delves) hyperspherical coordinate region,
large enough to enclose all rearrangement processes, beyond which the coordinate system is changed [3]:

mar maxr mazx
Pmaz = Max (pAB yPBC » PAC )

where

p%%x = — \/(SZLCLZE)Z + QSZLamSgam cosxap + (Srgax)Z
Tangent-sphere from Delves hyperspherical [3l]:

— p COS 6)04 — Pmaz
P+ g — 20Pmax €08 O

Vo

_ p* + p?nax — 2ppmaz €08 b
psin b,

«




Tangent-sphere from Jacobi coordinates [3]:

S — Pmazx
ng + (Sa — pmaw)2

Ua:

3?1 + (Sa — pma:c)2

a —

Sa
Jacobi coordinates from tangent-sphere [3]]:
2
VoW
So = 55+
« 11 Ug wc% Pmazx
We
Sa = 2,2
1 +viwg

Volume element: A ) 5
W, (VaWs + Pmaz + VEWE Pmaz)

(1+vZwg)°

2
dweadva,dSadS,,

2 BOUND-STATE CALCULATIONS

The bound-state calculations on the {p,p,p} system used bondlength-bondangle coordinates (that is the two
proton-antiproton distances, 1 and r and the angle between these two ‘bonds’, ¢). Spherical oscillator
basis functions are used for the radial motions (with the parameter « set to zero to allow non-zero amplitudes
at r = 0) and Legendre polynomials for the angular motion [5]. The spherical oscillator basis functions
consist of products of a Gaussian and associated Laguerre polynomials, all defined in terms of the quantity
y = Br?. The polynomial part of the (direct product) basis set consists of 6327 symmetrised functions up
to 36th order in y and 8th order in cos 6.

The calculations are restricted to total angular momentum J = 0 (including the angular momentum of the
overall rotation of the system but excluding the spins of the protons and antiproton) and to be (spacially)
symmetric with respect to interchange of the protons.

The stabilization diagram for the {p,p,p} system for the complete range of stabilization parameter values
studied (312 = 0.000859 to 0.008125 ag) is given in Fig. See also Fig. 4 in the main text where
the narrower ranges of 3 ~1/2 = 0.002 to 0.005 ag and energy = —40 to —140 Ey, are used. The present
calculated energies of the {p,p,p} bound state and lowest-lying s-wave resonances are compared with the
literature results (mass-scaled from Ps~/Ps + e ™) in Table S1 below; the 571/2 values corresponding to
each energy are also given. The complete set of data is tabulated in a separate file stable.csv.

The one bound state is ‘variationally’ (if we ignore the quadrature errors) optimized for ~1/2 = 0.0009
ag. The apparent energies of the resonances also vary with 3. We note that the form of basis set used here
is quite restrictive with effectively just this one parameter adjusting the length scale of the whole basis set.

Figures show radial density plots for the lowest energy state (the true bound state, state 1), state 10

(an ordinary scattering state), and states 11, 12 and 20 (the three lowest energy s-wave resonances) - all for
B71/2 = 0.003416 ay.

Frontiers 9


Mark M. Law


Supplementary Material

3 STRONG INTERACTION

If proton-antiproton annihilation is assumed to occur at coalescence of the two particles, the probability of
annihilation can be calculated by considering a pseudopotential [6]:

VPP = APP5(R)

where the annihilation constant, A”P may be determined from experimental data, such as the width of
bound protonium states [6]:

15 = APP|g100(0)

The rate of in-flight annihilation can then be calculated [6]]:

N = (xa, (R)| VP i, (R)) = AP|x, (0)]2

where xg,(R) is the scattering function for the proton-antiproton pair, without considering the
pseudopotential. Only the J = 0 partial waves are non-zero at the origin, so only s-waves contribute to this
rate [[6]. This treatment is equivalent to first-order perturbation theory for an effective annihilation potential
proportional to §(R), so is not sufficient for large perturbations [[7].

A nonpertubative method for incorporating the strong interaction is to use an optical model potential,
which describes annihilation through the complex component of the optical potential. This approach often
makes use of significantly simplified proton mass densities, with free parameters adjusted to reproduce
experimental results [8].

A further alternative is to represent the strong interaction through a single complex parameter - the
Coulomb-corrected strong force scattering length [8]]. Since the range of the strong force (Ry; ~ 10 %aq)
is significantly shorter than typical atomic distances (R, ~ ag), where ag is the Bohr radius, there is a
range of internuclear distances short enough for the Born-Oppenheimer potential to be dominated by the
Coulomb interaction, that is larger than the range of the strong interaction [7].

The wavefunction for nuclear motion, x.; o(kR), can therefore be written as [7]]:

X%o(kR) = N[FQ(kR) + tan (532'G0(/€R)] Rs << R<< R,

where F{ is the zero-angular momentum regular Coulomb wavefunction, which the nuclear motion
wavefunction would be proportional to in the absence of the strong interaction, G is the zero-angular
momentum irregular Coulomb wavefunction, ds; is the (complex) phase shift induced by the strong
interaction, and /N is a normalisation constant. The imaginary component of the phase shift permits
annihilation, in a similar manner to the optical potential [7].

At atomic length scales (R ~ R,), leptonic interactions cannot be neglected, so the above form of
the wavefunction for nuclear motion is not valid [9]]. Instead, this form may be used as the short-range
boundary condition, replacing solely the regular Coulomb wavefunction (0s; = 0). This allows the

10



interaction potential to be integrated using standard methods, simplifying calculations significantly in
comparison to using an optical model potential [8].

Since atomic scattering energies (~ eV) are much smaller than typical nuclear energies (~ MeV), the
zero-energy limit of J5; may be used, which can then be related to the Coulomb-corrected scattering length
of the strong interaction [7/]]:

1 2
= = " lim cot dsi(k)
Qg u k—0

where b, is the Coulomb parameter, and a,; may be determined through fitting to experimental data.
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APPENDICES
1 DERIVATIONS
- 11/2
Ro\> (Rs\® . RuaRg
— o B 42 Sl
fo T e <M7> +<mﬂ> RRSTATFRSES G0
_ 11/2
Rs\?>  (Ra\® . RgRa
- k-] kL ) 2
rg = ug (Mv) +(ma) + Momg COS Yo (S2)
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R, R
e i (1 B n) [ -
gl
R R,
CoOS7YB = Sgn(’hﬁ)ﬂﬂ (VB + e cos 'Yaﬁ)/ rg (S4)
Yy «
From equation [ST} , , ,
Yo Rq Ry ) RoRs
— ) =\ t|=—]) +2 cos S5
(Ma) (M7> (mﬂ Mymyg o )
From equation [S3}

[ + cos :
Mry Vozﬂ

R, Rg cosvap 2 RoRp
— 2
M, ) ( mg i Mymg e

(
(

08 Yas \ 2 o )2 o) 2
() + (o) () - () - ()
2 2

() () - ()
(M—)Q (cos? 70— 1) = (2—2)2 (o2 7 — 1)

r 2 R 2
(—a) sin v, = <—ﬁ> sin? Yo
Ha mg

Tam

cos? v, < )

Therefore

Sin Yo = £ Sin vq

ot
and similarly

) TgMe
Sin Yo = iMﬂR sin 7y
«

From equation [S3
2 2 2 2
To ([ Ra Rg R, R,
(Ma> a (Mv) i (mﬁ i M €O o M ORIl

2 2
R
Rg =mg | ———cosv,3 + \/(ZZ) + (ﬁ) (cos2 yap — 1)

Therefore

=@

and similarly

2 2
Ry =m _fi CoS Yap £ MER ki (cos?yap — 1)
a = Mg M’y Yap 13 ]\4’7 Yas
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Alternatively, from equation [S3]

T _ Ro  Rp
sng(Va - COS Vo) = i, + " COS Va3
and so from equation [ST|
. Ro | Rghyms (ra)2 (Ra)2 (Rﬁ)Q
sn —cosVg =+ —-""1|—=| = [—) - | —
9\Vpa Lo e M,  2mgR.Rg Loy M, mg

e o (Be) ' (1) (B (R
pa M, @ M, Mo M, mg

25n9(7pa)

Therefore

and similarly

R ( 3 )2 (rﬂ ) 2 2 (Yag) o
m sgn coS
@ @ M, % g\ Vap pg My 6

2 TRANSFORMING FROM MIXED TO SINGLE JACOBI COORDINATES
2.1 Transformation examples

In general, at (R, R3, Vap):

i 2 2 11/2
Ta = [ (&> + <@> +2 HaFlp COS Va3
a (07 o
|\ M,y B R
—1/2
rg = ﬁ 2+ & 2~|—2Rﬁl[€acos /
p=Hp M, Me M mg Yop
- - —1/2
R R R 2 2
cos Yo = 5gn(V8a) (ﬁj + m—Z oS 'yag) (ﬁ) + (m—’2> + 2M7mﬁ COS Vo g
- 4 —1/2
Rz R Rs\> [Ra\® _RsR
cosYg = sgn(Yap) (Mi + m—z coS fya5> (ﬁ) + <mz> 2Mimo; COS Yo
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At the lower limit of each mixed integration variable, (R, R3,7.3) = (0,0,0):

rq =0
rg =10
Yo and 73 are undefined. At the upper limit of each mixed integration variable, (R., Rg,Vag) =
(Aa, A/@, 7T):
- 1/2
o Aa 2 Aﬁ 2 . 2 AaAﬁ
re=te\ar, ) T \ong) T Mms
|\ My ma ymp
- 1/2
(Aa Aﬂ>2 /
= M _—
@ I M, mg
Ay Ap
= :LLOC et ——
]\47 mp
- 1/2

Ag\? (AP AgA,
= £ ) ol P
o= () + () 2

=1 As Ao
p M, mq
—1/2
Ay A Ay A 217V
cos%a = sgn(vs0) \ 3 = 5 I\ G ~ g
vy vy
Ao A\ A, Ag|™!
=sontm) (5= ) |58
= isyn(')/ﬁa)
fYOé = 7T70
1/2
g op M,  mq M, mq
Az AN\ Az A7t
= sgn(Yap) (Vi - m—Z) Vi - m_z
= £59n(7ap)
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where the + solutions depend on whether A, /M., > Ag/mgand Ag/M, > Ay/maq.

2.2 Integration limits for single Jacobi coordinates
221 R,

Limits remain unchanged: 0, A,.

222 Rg

Limits remain unchanged: 0, Ag.

223 7o

These limits are dependent on the value of R,,. Since

R 2 R 2 R, R 12
« B allp

—a e )

(1%7> <71Lﬂ> M'W”B €08 ’Yaﬁ]

and it is always possible for R, = 0, Rg =0

Ta = Ha

Ta,min = 0

It is also always possible for Rg = Ag, 743 = 0 (cos v, = 1), meaning for a given R,

[ (Ra\?  [As\® _RuA
p— — — 2
Taymaz = fla (M7> +<m5 T Momg

[ (Ba, A5\
e (Mv+m6)

R, Ag
—o (57 + )

1/2

1/2

224 1y

These limits are dependent on the value of 123. Since

R 2 R 2 RsR, 1/
8 « Bl

Py o422 49
<1wf}/> <ma) Mfyma cos 7@6]

and it is always possible for R, = 0, Rg = 0

s = Hp

TBmin = 0
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It is also always possible for R, = Aq,7ap = 0 (cosy,3 = 1), meaning for a given [

R\ [A,\? RzA
"8maz = 11 (ﬁﬁ) +(—“) 4o fe
Y

My Mmq

1/2

Rs  Ad\’
- | (3 )

Rg Aa)
— R — —|— R —
He (]\47 Ma

1/2

225 7,4

These limits are dependent on the value of R, and r,. R, and r, are not consistent with an arbitrary
choice of 0 < Ry < Aﬁ and 0 < .3 < 0,3, s0 we first rewrite v, by eliminating Rg:

. R Ta 2 Rq 2 9
Rz =mg —Mcos%ﬁi o + E (cos?yap — 1)

SO

Q

R R
COS Vo = sgn(yﬁa)ﬁ— (Ma + m—Z coS %46)
o ¥

2 Ra Ra Ta 2 Ra 2 9
= 59”(7@)7 A + COSVagp L €98 7aB =+ ,U_ + A (cos?yap — 1)
« v Y « ¥

For 0 < 7, < 7, 7, changes monotonically with cos 7,,. Limits can therefore be obtained by minimising
and maximising cos V.

Q

2.2.6 7c]

These limits are dependent on the value of Rg and rg. R and 1 are not consistent with an arbitrary
choice of 0 < R, < Ay and 0 < Yag < Gag, so we first rewrite g by eliminating R:

2 2
Ry =m _fi COS Va3 = ER ki (cos? - 1)
a — Ma Mfy YapB 13 Mfy Yap

SO

ug (R R
cosvg = sgn(Vas)— <—5 + —2 cos va@)

rg \My  mq
Hs | LBs Rg e\ L (Be\' . o
= sgn(vag)% A + cosYap ~ 3L 08 Vap + M_ﬂ + A (cos* vap — 1)
gl gl gl
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For 0 < v5 < m, 73 changes monotonically with cos . Limits can therefore be obtained by minimising

and maximising cos .

3 TRANSFORMING FROM SINGLE TO MIXED JACOBI COORDINATES

3.1 From (R, 7a,%a) 10 (Ras Rsy Yas)

In general, at (Rq, o, Yo ):

Rg=m <—a>2—|—<—m)2—2s n( )ra = cos
B B o gn{vBa ,Uozn[fy Yo
(TQ)Q ( 0‘)2 ( 6)2
I M, mg
mg

cos = — ( sgn(ya) cos Ta _ Ha

IS

Mymg
2R Rg

COS Vo =

or

At (R, 7o, va) = (0,0,0):
Ry =0

Rg =
Yap 18 undefined.

At (Ra,ra,’ya) - (Aa,(la,'ff)

A, \2 an\ 2 anA

Ra— Ha Ao 9 ala

s=mal(5) + () +2ontoser
A, an
— a4 T
e (MW ,Uoz)

3.2 From (Rﬁ, T3, ’)’5) to (Ra, Rﬁa 704[‘3)

In general, at (Rg,73,73):

Rg = Rg
Rs )2 (Tﬁ)2 ol
Ro=m (— + (=) —2sgn(y, cos 7y
) a\/ M, Hp aﬁ)NﬂMv ’
2 2 2
= Mo [(15)? (1) (e
QRQRB s M,y My
or
Me rg  Rg
COSYaB = T sgn(Yap) COS ’yﬂu—ﬂ - E
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At (Rg,r,75) = (0,0,0):
Ry =0

Rg =
Yap s undefined.
At (Rﬁa T3, ’Yﬂ) - (Aﬁa ag, 7T>

X ¢(Aﬁ):<aﬂ)“‘+2 () 2242
=m — — sgnl 7,
“ “ M, ua aﬁﬂﬁMv

TABLE

Table S1. Energies (in atomic units) of the {p,p,p} bound state and lowest-lying s-wave resonances for Pn + p calculated in the present work using a simple
stabilization method and mass-scaled literature results for Ps~/Ps + e~ [10]. The 8~ 1/2 yalues corresponding to each of the present energies are also given.

Energy / Ey B2 1 Energy / Ey,
This work Literature
—483.1 0.0009 —481.0 bound state
—132.5 0.00235 —139.6 resonance
—113.4 0.0045 —116.9 resonance
—61.5 0.00365 —64.9 resonance
—53.5 0.00535 —54.8 resonance
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FIGURES

Ma=1, Mg=1, M,=1, Rg=0 - 3, Rg=0 - 5, Yap=0 - 1T
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Figure S1. Variation of 0 i, and 0q mq, With 1, for fixed R, as described in the text. The masses of
particles ABC are set to 1.

Ma=1, Mg=1, M,=1, Rg=0 - 3, Rg=0 - 5, ygp=0 - 11
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Figure S2. Variation of 0, ynin and 0y ma, With R, for large fixed r, as described in the text. The masses
of particles ABC are set to 1.
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Mg=1, Mg=1, M,=1, Ry=0 - 3, Rg=0 - 5, yop=0 - 1

X ea, min

ea, max

Figure S3. Preliminary 3d plot of the variation of 0 i, and 0 e, With R, and r,, as described in the
text. The masses of particles ABC are set to 1.

-100

-200

Energy / Eh

-300

-400

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Scaling parameter, B2/ ay

Figure S4. Stabilization diagram for the {p,p,p} system. The horizontal dotted lines represent the
protonium n = 2 (—114.7 Ey) and n = 3 (—51.0 Ey) states.
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0.05

0.03 0.04 0.05

0 0.01 0.02
R1/ag

Figure S5. Radial density plot for the lowest energy state (the true bound state) of {p,p,p}. In this and the
subsequent plots, the contours are given for 5% to 95% of the maximum density in steps of 10%

0.02 0.03 0.04 0.05

0 0.01

R1/ ag

Figure S6. Radial density plot for the 10th lowest energy state (an ordinary scattering state) of {p,p,p}.
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0.05

0 0.01 0.02 0.03 0.04 0.05
R1/ag

Figure S7. Radial density plot for the 11th lowest energy state (the lowest resonance) of {p,p.p}.

0 0.01 0.02 0.03 0.04 0.05
Rl/ao

Figure S8. Radial density plot for the 12th lowest energy state (the second lowest resonance) of {p,p,p}-
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0 0.01 0.02 0.03 0.04 0.05
R1/ag

Figure S9. Radial density plot for the 20th lowest energy state (the third lowest resonance) of {p,p,p}.
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