Research Topic: Structure-Function Metrology of Proteins.

OOP-ESEEM Spectroscopy: Accuracies of Distances of Spin-correlated Radical Pairs in Biomolecules

Tarek Al Said, Stefan Weber, Erik Schleicher
Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
Phone: ++49(0)761 203-6204
Email: Erik.schleicher@pc.uni-freiburg.de

Supporting Information

Supporting Figure 1. Comparison of center of mass (black dot) versus centers of electron spin density (green dot) of 1-ethyl-lumichrome (left) and tryptophan (right). α, β, γ are the angles between the x, y, and z axes of 1 -ethyl-lumichrome and of tryptophan, respectively. The two coordinate systems are centered at the respective centers of masses. Please note that the numbering of the two molecules displayed is not in accordance with IUPAC, but as it is derived from the DFT calculations.

Supporting Table 1. Angle-dependent differences between the distance of the center of masses and the distance between the center of electron spin densities of 1-ethyl-lumichrome and tryptophan.

Orientation $(\alpha, \beta, \gamma) / \circ$	Distance between the center of masses $/ \AA$	Distance between the centers of electron spin densities $/ \AA$
$(0,0,0)$	20.00	20.49
$(0,90,0)$	20.00	20.02
$(0,180,0)$	20.00	19.56
$(0,0,90)$	20.00	19.97
$(0,0,180)$	20.00	19.56
$(90,0,0)$	20.00	20.49
$(180,0,0)$	20.00	20.49

Supporting Table 2. Atomic coordinates and electron spin densities of geometry optimized 1-ethyllumichrome (in Å).

Atom number	Coordinates /A			Mulliken spin densi-			
		y		z			
ties					$	$	C1
:---							
C2							

Supporting Table 3. Atomic coordinates and electron spin densities of geometry optimized Tryptophan (in Å).

Atom number	Coordinates /A			Mulliken spin densities
	x	y	z	
C1	21.20826	-0.74164	0.00040	0.077371
C2	22.38372	-0.01685	0.00107	0.010584
N3	23.71969	-0.45863	0.00186	0.153078
C4	24.55240	0.59266	0.00231	0.179348
C5	23.79511	1.80727	0.00149	0.350242
C6	22.42010	1.40309	0.00099	-0.080656
C7	21.20379	2.11609	0.00028	0.228855
C8	20.00000	1.39681	-0.00000	-0.062793
C9	20.00000	0.00000	0.00000	0.151013
C10	24.34776	3.18725	-0.00006	-0.018973
C11	25.87380	3.30011	-0.00581	0.000251
H12	21.19258	-1.83133	0.00026	-0.003468
H13	24.01476	-1.43240	0.00203	-0.007763
H14	25.63000	0.46273	0.00319	-0.009154
H15	21.19388	3.20593	-0.00011	-0.011374
H16	19.05270	1.93369	-0.00037	0.002437
H17	19.05351	-0.53946	-0.00035	-0.008009
H18	23.92763	3.72174	0.87191	0.024392
H19	23.92100	3.72156	-0.86884	0.024265
H20	26.31883	2.84094	0.88712	0.000358
H21	26.17086	4.35501	-0.01228	-0.000364
H22	26.31238	2.83150	-0.89711	0.000363

Supporting Figure 2: Influence of D values ($J=0.01 \mathrm{MHz}$) on calculated OOP-ESEEM time traces (A) and corresponding SFT spectra (B). Two different relaxation times, 0.35μ (upper panels) and 0.10μ s (lower panels), were used. The frequencies $v_{\|}$and v_{\perp} are shown as dotted lines. Other parameters as in the methods section.

Supporting Figure 3. Influence of J values ($D=-8 \mathrm{MHz}$) on calculated OOP-ESEEM time traces (A) and corresponding SFT spectra (B). The frequencies $v_{\|}$and v_{\perp} are shown as dotted lines. Other parameters as in the methods section.

Supporting Figure 4. Influence of relaxation time and SNR on the quality of numerical simulations of calculated OOP-ESEEM time traces (A) and corresponding SFT spectra (B). Calculated time traces (D $=-2.0 \mathrm{MHz}$ and $J=0 \mathrm{MHz}$) with different SNRs including reconstruction with the AR model (blue circles), and two different relaxation times, $T_{\mathrm{d}}=0.35 \mu \mathrm{~s}$ and $T_{\mathrm{d}}=0.1 \mu \mathrm{~s}$, are depicted in dark and light blue, respectively, results from numerical spectral simulations are depicted in red. The vertical dashed lines in the SFT spectra are the correct frequencies $v_{\|}$and v_{\perp}. Other simulation parameters are summarized in Table 4.

Supporting Table 4. Comparison of calculated OOP-ESEEM time traces from one D / J pair (SNR $=$ 20), and results of numerical simulation using different start parameters. Starting parameters for T_{d} and H were $0.25 \mu \mathrm{~s}$ and 1.0 , respectively. Boundary conditions were were set to: $D=[-20,0] \mathrm{MHz}$ (fit 3: $D=[-30,0]), J=[0,15] \mathrm{MHz}, T_{\mathrm{d}}=[0,10] \mu \mathrm{s}$ and, $H=[0, \infty]$. Distance r was calculated using the PDA. RSS: squared norm of the residual.

	D / MHz	J / MHz	$T_{\mathrm{d}} / \mu \mathrm{s}$	SNR	r / \AA Calculated parameters $\mathrm{-14.5}$	2.0

Supporting Figure 5. Influence of start parameters on the quality of numerical simulations of calculated OOP-ESEEM time traces (A) and corresponding SFT spectra (B). Calculated time traces including reconstruction with the AR model (blue circles) are depicted in blue, results from numerical spectral simulations are depicted in red. The vertical dashed lines in the SFT spectra are the correct frequencies $v_{\|}$ and v_{\perp}, start parameters are summarized in Supporting Table 4. Differences between calculated and simulated $v_{\|}$values are highlighted in green.

