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1 MODEL EQUATIONS AND PARAMETERS
The asymptotic function for the calcium conductance m∞ is given by

m∞(v) =
1

2
(1 + tanh ((v − vA)/vB)) . (S1)

The voltage and potassium nullclines, v∞(v) and w∞(v), are

v∞(v) =
−gl(v − vl)− gcam∞(v)(v − vca) + I − ḡs(v − vs)

gk(v − vk)
, (S2)

w∞(v) =
1

2
(1 + tanh ((v − vC)/vD)) . (S3)

Model parameters were adapted from Bose and Booth (2011) and are given in table S1:

Table S1. Default parameters for coupled Morris-Lecar model.

Parameter value

gL 0.15 mS/cm2

gCa 0.3 mS/cm2

gK 0.6 mS/cm2

vL −50 mV
vCa 100 mV
vK −70 mV
vA 1 mV
vB 14.5 mV
vC 4 mV
vD 15 mV
I 3.8 µA/cm2

τw 100 ms
τa 1000 ms
τb 100 ms
τκ 100 ms
vθ 0 mV
vs −80 mV
T 376 ms
Ta 49 ms
Ts 327 ms
g? 0.0068 mS/cm2

gbif 0.0038 mS/cm2

ḡs 0.584 mS/cm2

λ := exp(−Ta/τb) 0.612
ρ := exp(−Ts/τa) 0.721
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2 COMPUTING BIFURCATION DIAGRAM NUMERICALLY
The bifurcation diagram of stable n : n solutions of the two-cell network in fig. 3 is obtained
numerically as follows: We initialise the coupling strength at parameter values associated with one
type of n : n solution, that is we choose the values ḡ = 0.35, 0.4, 0.5, 0.52, 0.56 for the 1 : 1, 2 : 2,
3 : 3, 4 : 4, and 5 : 5 solutions respectively. For each ḡ the system is then numerically integrated
sufficiently long for any transients to fully subside. We then identify one period of the solution
by finding the first return of the depression variable d1. That is, we choose some value dk at a
spike time tk, and by iterating from spike to spike find some subsequent value dk+1 at spike time
such that |dk+1 − dk| < ε. If a periodic solution of type n : n is found in such way, ḡ is step-wise
increased/decreased, and the above algorithm is repeated. Otherwise, the set of all previously found
solutions and the corresponding values ḡ are returned.

3 NUMERICAL VALIDATION OF CONSTANT ISI ASSUMPTION
To study the effect of the synaptic time constant τκ on consecutive ISIs of the active cell we consider
a single cell that is inhibited by an exponentially decaying synaptic conductance g:

v̇ = f(v, w)− g(v − vs), (S4)
ẇ = h(v, w), (S5)
ġ = −g/τκ, (S6)

where functions f and h come from eqs. (3) and (4). We assume that the cell is released and fires
its first spike at time t = 0. We therefore initialise v at the firing threshold vθ, w at its nullcline,
and the g at the release conductance g?, respectively:

v(0) = vθ, (S7)
w(0) = v(0), (S8)
g(0) = g?. (S9)

We vary τκ and integrate the system numerically to record consecutive ISIs.

Figure S1 shows the curves for the first (ISI1), second (ISI2), and third (ISI3) inter-spike-intervals
for values τκ ∈ (0, 800]. These results suggest that for τκ ≤ 100 we have ISIi ≈ T , that is, inhibition
g decays sufficiently fast for its effect on the spiking period to be negligible. For τκ > 100 the first
ISI1 becomes increasingly longer with τκ, moreover the effect of the inhibition propagates to the
subsequent ISI2 and ISI3, suggesting that for a too slow synaptic time constant the assumption
ISI ≈ T is not suitable.
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Figure S1. Numerically computed values of the first (ISI1), second (ISI2), and third (ISI3) inter-
spike-intervals as a function of τκ ∈ (0, 800].
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