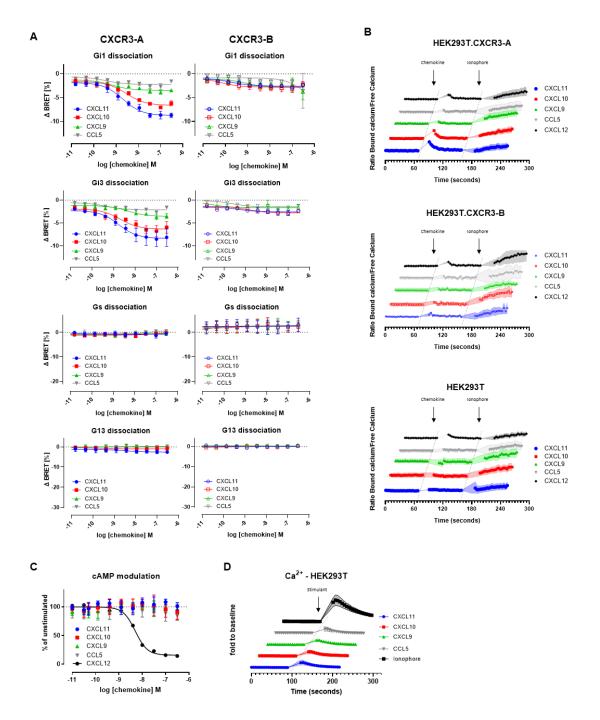
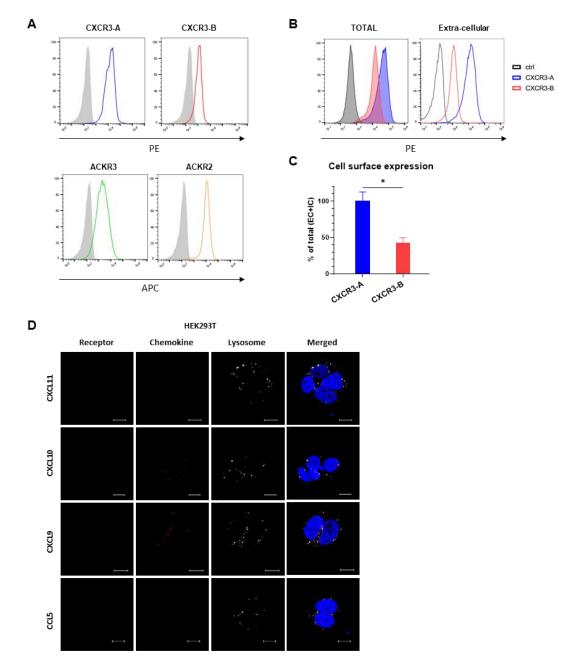
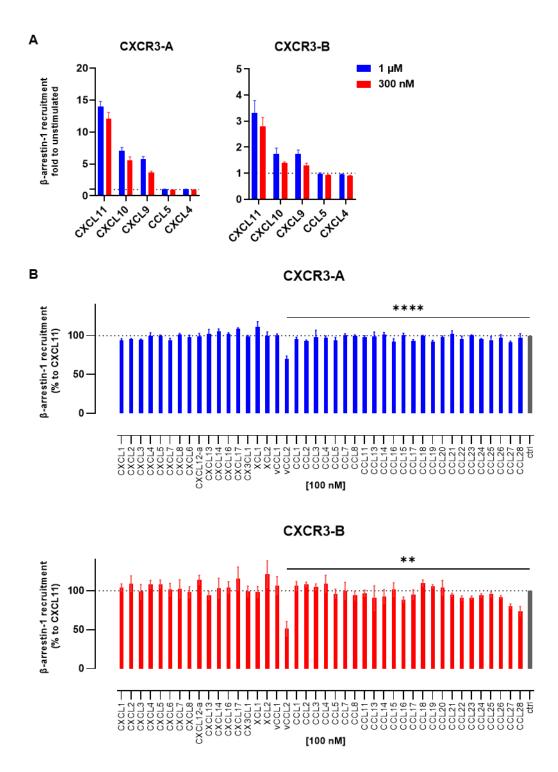


Supplementary Material



Supplementary figure 1. Overview of the three CXCR3 isoforms. Due to alternative splicing of the pre-mRNA of the *CXCR3* gene, located on chromosome X, three CXCR3 isoforms can be generated. The CXCR3-A isoform is the product of the splicing of the exon 1 and exon 3 within the CXCR3 gene. The assembly of exon 2 and exon 3 results in the CXCR3-B isoform which has an N terminus longer by 47 amino acids compared with CXCR3-A. The removal of the intron, exon 2 and a 337-bp region within the third exon during RNA splicing results in the CXCR3-Alt isoform that comprises the N terminus and the first four transmembrane domains identical to CXCR3-A as well as a possible fifth transmembrane region and a C terminus, which are different from CXCR3-A or CXCR3-B. All CXCR3 isoforms are able to bind three endogenous ligands CXCL9, CXCL10 and CXCL11, each with a different binding affinity and activation potential.


Supplementary Material


Supplementary figure 2. (A–B) Chemokine-induced recruitment of miniGi, miniGq, miniGs and miniG12/13 protein to CXCR3-A and CXCR3-B monitored by NanoBiT-based assay in HEK293T (A) or U-87 MG cells (B). (C) Chemokine-induced β -arrestin-1 and β -arrestin-2 recruitment to CXCR3-A and CXCR3-B after chemokine stimulation in U-87 MG cells using nanoluciferase complementation assay. (D) Chemokine-induced β -arrestin-1 and β -arrestin-2 recruitment to CXCR3-A or CXCR3-B monitored by NanoBRET assay in HEK293T cells. Data represent mean ± SEM of three independent experiments.

Supplementary figure 3. (A) Chemokine-induced heterotrimeric G protein dissociation profiles for G_{i1} , G_{i3} , G_s , G_{13} monitored in CXCR3-A- or CXCR3-B-expressing HEK293T cells by NanoBRET. (B) Mobilization of intracellular calcium in HEK293T cells stably expressing CXCR3-A or CXCR3-B or in naïve HEK293T cells in response to CXC or CC chemokines (100 nM) monitored with the ratiometric fluorescent indicator Indo-1 AM. Calcium ionophore A23187 (1 μ M) was used as receptor-independent control. (C–D) Downstream G protein signaling in naïve HEK293T cells after treatment with CXCL12, CXCL11, CXCL10, CXCL9 or CCL5 by luminescence-based intracellular cAMP modulation (C) or NanoBiT-based intracellular calcium release (D). CXCL12 or Ionophore A23187 were used as positive control to confirm assay functionality. For all panels, data represent mean ± SEM of three independent experiments.

Supplementary figure 4. (A) Flow cytometry analysis of stable HEK293T-derived cell lines used in receptor recycling studies. Cell surface expression of CXCR3-A, CXCR3-B, ACKR3 or ACKR2, was evaluated with receptor-specific mAb (clones 1C6, 8F11-M16 and 196124, respectively) and the related isotype controls. (B) Flow cytometry comparison of total or extracellular expression of CXCR3-A and CXCR3-B HEK293T-derived stable cell lines evaluated with mAb 1C6 and related isotype control. (C) Cell surface expression of CXCR3-A and CXCR3-B quantified by HiBiT-mediated nanoluciferase complementation and expressed as percentage of total receptor expression (extracellular and intracellular). *p < 0.05 by Mann-Whitney two-tailed test. (D) Confocal microscopy images of naïve HEK293T cells after 2-hour incubation with CXCR3-related chemokines or CCL5 (100 nM). Alexa Fluor 647-labeled chemokines are represented in red, lysosomes stained with LysoTrackerTM Red DND-99, in white and nuclei stained with Hoechst 33342, in blue. Scale bar: 10 µm. Pictures are representative of 12 acquired images from three independent experiments.

Supplementary figure 5. (A) β -arrestin-1 recruitment towards CXCR3-A and CXCR3-B in response to 1 μ M or 300 nM of CXCL11, CXCL10, CXCL9, CCL5 and CXCL4 monitored by NanoBiT-based assay in HEK293T cells. (B) Antagonistic activity of all non-agonist chemokines (100 nM) towards CXCR3-A or CXCR3-B evaluated following addition of CXCL11 (20 nM) by NanoBiT-based β -arrestin-1 recruitment assay in HEK293T cells. **p < 0.01, ****p < 0.0001 by ordinary one-way ANOVA with Bonferroni multiple comparison test was used. For all panels, data represent mean \pm SEM of three independent experiments.

Table 1 - CXCR3 variants activation by CXCL11, CXCL10 and CXCL9 $\,(EC_{_{50}}\,nM)$

	CXCR3-A			CXCR3-B		
	CXCL11	CXCL10	CXCL9	CXCL11	CXCL10	CXCL9
miniGi recruitment	12.4 (7.2 – 21.6)	18.2 (3.9 – 74.0)	ND	NA	NA	NA
miniGq recruitment	25.9 (18.6 - 36.2)	22.2 (15.0 - 32.9)	ND	ND	NA	NA
β-arrestin-1 recruitment	15.8 (10.6 – 23.5)	17.8 (12.9 – 24.8)	ND	49.4 (36.9 - 66.6)	ND	ND
β-arrestin-2 recruitment	2.9 (1.8 - 4.8)	2.9 (0.8 - 10.2)	~ 1.6x10 ⁴	12.4 (7.3 – 21.2)	59.2 (23.5 - 159.7)	$\sim 1 \times 10^{5}$
Gi2 dissociation	1.2 (0.4 – 3.9)	0.9 (0.3 – 2.7)	19.9 (5.9 - 54.4)	NA	NA	NA
Go1 dissociation	1.8 (0.8 - 4.2)	1.9 (1.1 – 3.1)	77.8 (34.1 – 201.5)	ND	NA	NA
Gq dissociation	0.4 (0.03 – 3.1)	2.3 (0.7 - 7.1)	~ 56	NA	NA	NA
cAMP	6.3 (5.0 - 8.0)	14.1 (10.5 – 19.0)	21.9 (12.6 - 38.0)	NA	NA	NA

 EC_{50} values are indicated in nanomolar (nM) with 95% confidence interval (CI).

ND: Not determinable since saturation was not reached.

NA: No activity or activity below 10% of positive control in the concentration range tested

Table 2 - N-terminally modified chemokines on CXCR3-A and CXCR3-B (EC $_{50}$ nM and E_{max} %)

	CXCR	3-A	CXCR	3-В
Chemokines	EC ₅₀ nM	E _{max} %	EC50 nM	E _{max} %
CXCL11	9.6 (5.6 - 16.3)	100	51.6 (40.7 - 65.3)	100.0
CXCL11-CD26	NA	6.2	NA	3.9
CXCL113-73	NA	7.5	NA	6.3
CXCL115-73	NA	0	NA	0.0
CXCL117-73	NA	5.8	NA	1.5
CXCL11 _{P2G}	14.8 (9.8 – 22.5)	42.1	152.7 (107.8 – 226.4)	40.9
CXCL11 _{10Nloop}	28.8 (22.8 - 36.4)	67.8	269.7 (168.2 - 504.6)	61.6
CXCL11 _{12Nloop}	99.2 (67.7 – 150.4)	29.8	ND	10.6
CXCL10	10.7 (6.8 - 16.5)	41.7	ND	13.7
CXCL10-CD26	NA	1.2	NA	1.8
CXCL9	ND	28.1	ND	15.3
CXCL9-CD26	NA	9.5	NA	5.2

EC50 values are indicated in nanomolar (nM) with 95% confidence interval (CI).

Emax %: maximum signal measured at 300 nM expressed as % of the full agonist CXCL11.

ND: Not determinable since saturation was not reached.

NA: No activity or activity below 10% of positive control in the concentration range tested.

Table 3 -	CXCR3-B	N-terminal	extension	(EC ₅₀	nM and	Emax 9	%)
-----------	---------	------------	-----------	-------------------	--------	--------	----

miniGi	EC ₅₀ nM	E _{max} %
CXCR3-A	18.2 (9.7 – 34.4)	100.0
CXCR3-B	NA	0.0
CXCR3-B -40	32.7 (11.4 – 97.2)	51.0
CXCR3-B -30	27.2 (6.5 - 128.0)	42.4
CXCR3-B -20	ND	11.6
CXCR3-B -10	ND	10.8
CXCR4	10.3 (4.6 – 23.2)	100.0
extCXCR4-B-	ND	11.6
β-arrestin-1	EC ₅₀ nM	E _{max} %
CXCR3-A	6.7 (2.9 – 14.8)	100.0
CXCR3-B	23.9 (14.4 - 39.6)	75.9
CXCR4	7.1 (3.8 – 13.3)	100.0
extCXCR4-B	24.0 (12.6 - 46.1)	44.0

EC50 values are indicated in nanomolar (nM) with 95% confidence interval (CI).

Emax %: maximum signal measured at 300 nM expressed as % of the full agonist CXCL11. ND: Not determinable since saturation was not reached.

NA: No activity or activity below 10% of positive control in the concentration range tested

CXCR3 artificial and natural isoforms were stimulated with CXCL11

CXCR4 artificial and natural isoforms were stimulated with CXCL12

I.

I