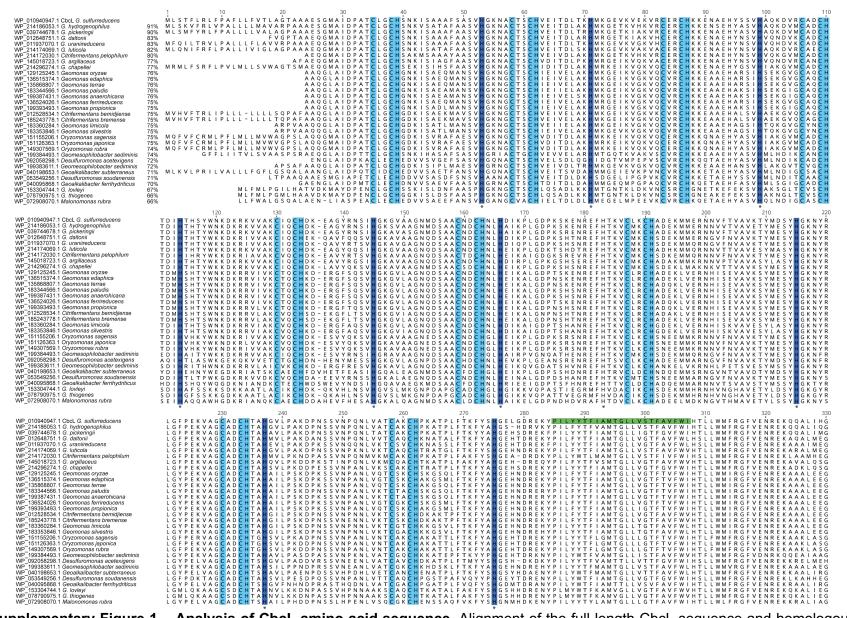
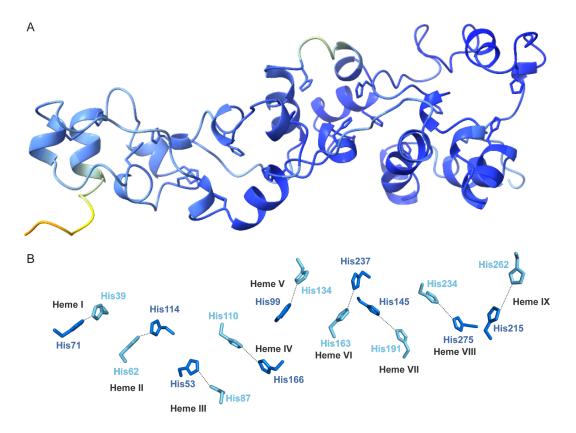
Supplementary Information

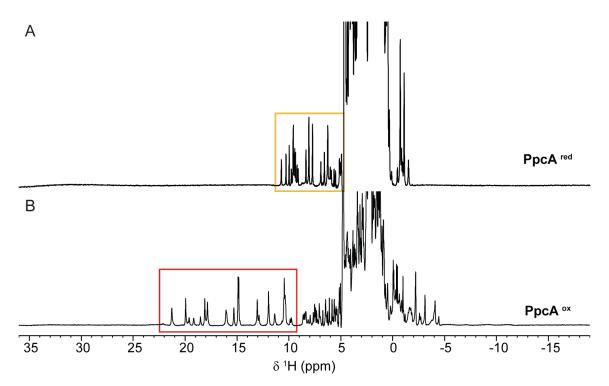

Electron flow from the inner membrane towards the cell exterior in *Geobacter sulfurreducens*: biochemical characterization of cytochrome CbcL

Jorge M. A. Antunes^{1,2}, Marta A. Silva^{1,2}, Carlos A. Salgueiro^{1,2,*}, Leonor Morgado^{1,2,*}

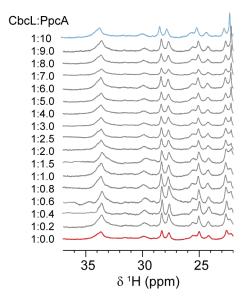
¹Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal

²UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal


^{*}Corresponding authors: csalgueiro@fct.unl.pt, mlmorgado@fct.unl.pt


Supplementary Figure 1 – Analysis of CbcL amino acid sequence. Alignment of the full-length CbcL sequence and homologous proteins with pairwise identity above 65% as retrieved by BLAST (Altschul et al., 1997) and aligned with Clustal Omega (Sievers and Higgins, 2018). NCBI access number and species are identified for each sequence. The heme binding motifs CXXCH are colored in light blue, the conserved histidine residues in the periplasmic domain are marked with a * and those which are axial ligands are colored in dark blue. The residues in the transmembrane helices are colored in green (as predicted by TMHMM - 2.0; Möller et al., 2001).

	340 350 360 370 380 390 400 410 420 430 440
 WP_010940947.1 CbcL G. sulfurreducens WP_011840053.1 G. hydrogenophilus WP_03474673.1 G. pickenrigit WP_012644751.1 G. daltoni WP_01174063.1 G. kulochernigit WP_01174068.1 G. kulochernigit WP_01174068.1 G. kulochernigit WP_1417208.1 G. Chapellei WP_21427245.1 Geomonas oryzee WP_12524.5 Geomonas forzee WP_13654026.1 Geomonas forzee WP_19387451.1 Geomonas forzee WP_1155201.2 G. Grappionas forzee WP_1155201.2 G. Grappionas forzee WP_11525331.1 Geomonas forzee WP_11453631.1 Grappionas jubraice WP_193935131.1 Geomonas gonica WP_161155201.1 Oryzonnas cubraice WP_16130531.1 Geomonas gonica WP_16130531.1 Geomonas gonica WP_16130531.1 Geomonas acetexiqens WP_16130531.1 Geomonas acetarigens WP_16130531.1 Geomonas acetarigens WP_16130581.1 Geomonas acetarigens WP_040198581.1 Geomo	40/ 50/ 30/ 30/ 30/ 30/ 30/ 30/ 4
WP 010940947 1 Cbcl. G. sulfurreducens	450 460 470 480 490 500 510 520 530 540 550 PNFRDIKOVAGMVRWFLFRÖPKPTFERWTYWEKFDFTAVFWGMFATGGSGLMLWEPEFFÖSFLPGWMFNV <mark>ATTIVHSDEALLATGFIFTTVHFFN</mark> THGRPEKFPMDFVIFNG
 WP 214186053.1 G. hydrogenophius WP 3397444781.6 G. pickeringii WP 012648751.1 G. dattonii WP 017701.1 G. unireducens WP 017701.1 G. unireducens WP 0178231. G. angliaceus WP 214172030.1 G. chalaceus WP 214172031. G. chapeliei WP 2142524.1 Geormonas oryzae WP 1325480.1 Geormonas terrae WP 13937431.1 Geormonas terrae WP 193387431.1 Geormonas formeducens WP 193387431.1 Geormonas formeducens WP 193387431.1 Geormonas formeducens WP 193387431.1 Geormonas formeducens WP 193383453.1 Geormonas formeducens WP 193383453.1 Geormonas formeducens WP 193383453.1 Geormonas formeducens WP 193383453.1 Geormonas sitersitis WP 193383443.1 Geormonas sitersitis WP 193383443.1 Geormonas sitersitis WP 151155206.1 Oryzomonas sigensis WP 151155206.1 Oryzomonas sigensis WP 1513833443.1 Geormonas subcatter sedminis WP 19333341.1 Geormonas subcatter sedminis WP 1513653.1 Oryzomonas subcatter sedminis WP 151355340.1 Geormonas subcatter sedminis WP 15135533441.3 Geormonas subcatter sedminis WP 151355340.1 Geormonas subcatter sedminis WP 151355546.1 Geormonas subcatter sedminis WP 151535546.1 Geormonas subcatter sedminis WP 1515555	PN FR D I K D V AG MV R WF L FR OF K PT F ERW TYWEK F D F I AV FWG MFA I GG S G L ML WF PE FF G SF L P GWM N VAT I VH S D E ALL AT G F I FT VH F FN TH GR PE K F P MD F V I FN G PN FR D I K D V G M FA I GG S G L ML WF PE FF G SF L P GWM N VAT I VH S D E ALL AT G F I FT VH F FN TH GR PE K F P MD F V I FN G PN FR D I K D V G M FA I G G S G L ML WF PE FF G F L P G WA F N VAT I VH S D E ALL AT G F I FT VH F FN TH G R PE K F P MD F V I FN G PN F K D I N V W K F D F I A V W G M FA I G G S G L ML WF PE FF G M L P G WA F N VAT I VH S D E ALL AT G F I FT VH F FN TH G R PE K F P MD F V I FN G PN F K D I N V W K F D F I A V W G M FA I G G S G L ML WF PE FF G M L P G WA F N VAT I VH S D E ALL AT G F I FT VH F FN TH G R PE K F P MD F V I FN G PN F K D I N V W W K F D F I A V W G M FA I G G S G L ML WF PE FF G M L P G WA F N VAT I VH S D E ALL AT G F I FT VH F FN TH G R PE K F P MD F V I FN G PN F N T FN TH G R PE K F P MD F V I FN G PN L P D I N V W W K FF F R G F K P T F E W T Y W K K F D F I A V W G M FA I G G S G L ML WF PE FF G M L P G WA F N VAT I VH S D E ALL AT G F I FT VH F FN TH G R PE K F P MD F V I FN G PN L P D I N V W W K FF F R C P K P T F E R W T Y W K K F D F I A V W G M FA I G G S G L ML WF PE FF G M I L P G WA F N VAT I I H S D E ALL AT G F I F S VH F FN TH G R PE K F P MD F V I FN G PN L S D V I G W R M F F F C G K F P T F R W T Y W K K F D F I A V W G M FA I G G S G L ML WF PE FF G M I L P G WA F N VAT I I H S D E ALL AT G F I F S VH F FN TH G R PE K F P MD F V I FN G PN L S D V I G W R WF F F K G F K P T F R W T Y W K K F D F I A V W G M FA I G G S G L ML WF PE FF G M F L P G WA R N VAT I I H S D E ALL AT G F I F S VH F FN TH G R PE K F P MD F V I FN G PN L S D V I G W R WF F F K G K K P T F R W T Y W K K F D F I A V W G M FA I G G S G L ML WF PE FF G M F L P G WA R N VAT I I H S D E ALL AT G F I F S VH F FN TH G R PE K F P MD F V I FN G PN L S D V I G W R WF F F K G K K P A F R W T Y W K K F D F I A V W G M FA I G G S G L ML WF PE FF G M F L P G W A N VAT I I H S D E ALL AT G F I F T T H F FN TH G R PE
WP_010940947.1 CbcL G. sulfurreducens WP_214186053.1 G. hydrogenophilus	QMPKHEFIE ÉRGDQWKRYE ÉLGITE E FAAKKTSGVVYD FÍVKGFGFTAVÝIGLTLVVLMLY AFLSGGAH QMPKHEFLE ERGDQWKRYE ELGITE OFAAKKTSGVAYDFIVKAFGFCAVIIGLSLVVLMLFAFLSGGSH QLPKHEFLE ERGDQWKRYE ELGITE OFAAKKTSGIAYDFFVKSFGFFAVITGLTLVVLMLYA
 WP 0387446781 G pickeringii WP 014847511 G diatonii WP 014847511 G diatonii WP 2141720301 Citrifermentans palophilum WP 2141720301 Citrifermentans palophilum WP 1441720301 Citrifermentans palophilum WP 14517231 G arglifaeus WP 1515741 Geomonas edaphica WP 193387431 Geomonas paludis WP 193387431 Geomonas farreiducens WP 193334621 Geomonas farreiducens WP 19333501261 Geomonas farreiducens WP 1512525341 Citrifamentans barmense WP 1513528341 Citrifamentans barmines WP 1513528341 G comonas agensis WP 15135334631 Goornonas agensis WP 15135334631 Goornonas agensis WP 15135334631 Goornonas acter sediminis WP 043346231 Goornasphilobacter sediminis WP 0434625811 G contaconas acter sediminis WP 0434625811 Goordanas acter sediminis WP 0434625811 Goordanas acter sediminis WP 0434625811 Goordanas acter sediminis WP 043462581 Goordanabacter farminy drinkcus WP 043462581 Goordanabacter farminy drinkcus WP 043462581 Goordanabac	Q L P K H E F L E E R G D Q W K R Y E E L G I T E Q F A A K K T S G I A Y D F F V K A F G F T A Y I T G L T L V V L M L F A F L A G G S H Q L P K H E F L E E R G D Q W K R Y E E L G I T E Q F R A K H T S G I A Y D F I V K A F G F T A Y I T G L T L V V L M L F A F L A G G S H Q I S K H E F V E E R G D Q W K R Y E L G I T E Q F R A K H T S G I A Y D F F V K A F G F T A V I T G L T L V V L M L F A F L A G G S H Q I S K H E F V E E R G D Q W K R Y Q D H G I M E K Y A K K K T S G V M Y D F F V K A F G F C A Y I T G L T L V L M I F A F M H G G G H Q I S K H E L L E E R G D Q W K R Y Q D H G I M E K Y A K K K T S G V M Y D F F V K A F G F T A L F T G I T L L F M I Y A F M H G G G H Q I S K H E L V L E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Q F A A K S S G I F Y D F C L K A F G F T A L F T G I T L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K D G I T E Y F A A K S S G I F Y D F C L K A F G F T A L F I G I T L M M I Y A F M Q M S K H E F V E E R G D Q W A R Y E K G G I T E K F R A A R S S G I A Y D F L K T G F T A L F I G I S L L M I L A F N N G G H


Supplementary Figure 1 – CbcL amino acid sequence analysis (continued).

Supplementary Figure 2 – AlphaFold prediction of CbcL periplasmic domain structure (Jumper et al., 2021). (A) Structural model in cartoon representation colored by prediction confidence (B-factor). (B) Heme axial ligands. Histidine residues from the heme binding motifs CXXCH are colored in light blue (proximal ligands) and distal ligands in dark blue.

Supplementary Figure 3 – 1D ¹H NMR spectrum of cytochrome PpcA in the reduced (A) and oxidized (B) forms. Spectra were acquired at 25 °C with 100 μ M of PpcA in 10 mM sodium phosphate pH 8. The yellow and red rectangles highlight the PpcA fingerprints in the reduced and oxidized states, respectively.

Supplementary Figure 4 – NMR chemical shift perturbation experiments of CbcL in the presence of PpcA. 1D ¹H NMR spectra of CbcL acquired with increasing amounts of PpcA (ratio CbcL:PpcA indicated on the left side of each spectrum). Spectra were acquired at 25 °C with 100 μ M of CbcL in 10 mM sodium phosphate pH 8.

References

- Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389–3402. doi:10.1093/nar/25.17.3389.
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature* 596, 583–589. doi:10.1038/s41586-021-03819-2.
- Möller, S., Croning, M. D. R., and Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. *Bioinformatics* 17, 646–653. doi:10.1093/BIOINFORMATICS/17.7.646.
- Sievers, F., and Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. *Protein Sci.* 27, 135–145. doi:10.1002/pro.3290.