Supplementary Material (SM)

Unnatural Amino Acid: 4-Aminopyrazolonyl Amino acid Comprising

tri-Peptides Form Organogel with Co-solvent (EtOAc:Hexane)

Amarnath Bollu,^{a,b} Prajnanandan Giri,^{a,b} Nihar Ranjan Dalabehera,^{a,b} Asmita Rani Asmi,^{a,b}

Nagendra K Sharma* a,b

^aNational Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni Campus, Jatni-752050 (Odisha)-India;

^bHomi Bhabha National Institute (HBNI), HBNI-Mumbai, Mumbai, 400 094, India.

Contents

1.	¹ H-/ ¹³ C-/ ESI-MS/HRMS spectra of 2a	
2.	¹ H-/ ¹³ C-/ ESI-MS/HRMS spectra of 2b	
3.	¹ H-/ ¹³ C-/ ESI-MS/HRMS spectra of 2c	S6
4.	¹ H-/ ¹³ C-/ ESI-MS/HRMS spectra of 2d	
5.	¹ H-/ ¹³ C-/ ESI-MS/HRMS spectra of 2e	
6.	Circular Dichroism (CD) spectra control peptides and 2a-2e.	
7.	FT-IR spectra of peptide organogel (2b/2c/2d/2e)	S16
8.	SEM Images of peptide organogel (2b/2c/2d/2e)	S17
9.	Powder XRD of peptides 2b/2c/2d/2e.	
10.	¹ H-COSY- NMR and DMSO-d6 titration	S19
11.	TGA and Derivative TGA plots of peptides 2b/2c/2d/2e.	
12.	UV-Vis Spectra of peptides 2c/2e in MeOH.	
13.	Theoretical calculation of APA-peptides conformers	
14.	Reference	

Figure S1. ¹H-NMR (400MHz) and ¹³C-NMR (176MHz) spectra of 2a in DMSO-d6

Figure S2. ESI-MS/HRMS spectra of 2a

2. ¹H-/¹³C-/ ESI-MS/HRMS spectra of **2b**

Figure S3. ¹H-NMR (400MHz) and ¹³C-NMR (176MHz) spectra of 2b in DMSO-d6

Figure S4. ESI-MS/HRMS spectra of 2b

3. $^{1}\text{H}-^{/13}\text{C}-/\text{ ESI-MS/HRMS}$ spectra of 2c

Figure S5. ¹H-NMR (400MHz) and ¹³C-NMR (176MHz) spectra of 2c in CDCl₃

Figure S6. ESI-MS/HRMS spectra of 2c

4. $^{1}\text{H}-/^{13}\text{C}-/\text{ESI-MS}/\text{HRMS}$ spectra of 2d

Figure S7. ¹H-NMR (400MHz) and ¹³C-NMR (176MHz) NMR spectra of 2d in DMSO-d6

Figure S8. ESI-MS/HRMS spectra of 2d

Figure S9. ¹H-NMR (400MHz) and ¹³C-NMR (176MHz) spectra of **2e** in CDCl₃(1 drop Methanol-D₄)

Figure S10. ESI-MS/HRMS spectra of 2e

6. Circular Dichroism (CD) spectra control peptides and 2a-2e.

CD spectra were recorded in degassed CH₃OH, AcCN, CHCl₃, and CF₃CH₂OH at 20 ⁰C from 300-190 nm with peptide concentrations of 0.1 mM. CD data is collected with following parameters, Data pitch 2 nm, DIT 2 sec, bandwidth 2 nm, scanning speed 100 nm/min.

Figure S11. CD spectra of peptide 2a-2e in Acetonitrile (AcCN)

Figure S12. CD spectra of peptide 2a-2e in Methanol (MeOH)

Figure S13. CD spectra of peptide 2a-2e in Chloroform (CHCl₃)

Figure S14. CD spectra of peptide 2a-2e in Trifluoroethanol (TFE)

Figure S15. CD spectra of control peptides in Acetonitrile (AcCN)

Figure S16. CD spectra of control peptides in Chloroform (CHCl₃)

Figure S17. CD spectra of control peptides in Methanol (MeOH)

Figure S18. CD spectra of control peptides in Trifluoroethanol (TFE)

7. FT-IR spectra of peptide organogel (2b/2c/2d/2e)

Figure S19. FT-IR spectra of organogel (neat) and HFIP for APA peptides, 2b (A), 2c (B), 2d (C), and 2e (D).

Figure S20. Aminopyrazolonylated α/β -hybrid peptide organogels. SEM-images and organogels in inverted test tube: (A) peptide **2b**; (B) Peptide **2c**; (C) Peptide **2d**; and (D) peptide **2e**.

Figure S21. Powder XRD plot of powder & xerogel forms of APA peptides 2b (A), 2c (B), 2d (C) 2e (D).

Figure S22. ¹H-COSY spectra of APA-peptide, **2c** in CDCl_{3.} Without DMSO-d6 (A) and with 19 μ l DMSO-d6 (B).

Figure S23. ¹H-NMR of DMSO-d6 titration of APA peptide 2c in CDCl₃.

Figure S24. DMSO-d6 titration profile of amide NH in APA peptide 2c in CDCl₃.

(cont.)

Figure S25. TGA (left panel) and Derivative TGA (right panel) plots of organogel & powder form of peptides (2b-2e).

12. UV-Vis Spectra of peptides 2c/2e in MeOH.

We attempted to UV-vis spectra of peptides in ethyl acetate and hexane system but could not record owing to the precipitation. Thus we recorded the UV-spectra of representative peptides in MeOH.

Figure S26. UV-Vis Spectra of APA-Peptides in MeOH

13. Theoretical calculation of APA-peptides conformers

GMMX and GBSA solvation model are versatile theoretical methods for energy minimized structural conformation of peptidomimatics.^{1, 2}

Stepwise methods for the calculation of energy minimized structure: **Step-1**: ChemDraw (*.mol); **Step-2**: Gauss view 6.1.1 (GMMX conformer calculation; conformer search, Force field MMFF94; Enegry windo 3.5 (Kcal/mol; Max. serach 10000);; **Step-3**: GBSA solvation model; Pcm10 software; conditions: Force field MMFF94; solvent dielectric 78.3 and internal dielectric: 1; **Step 4**: Image from gauss view 6.1.1.

Figure S27. Energy mimimized conformer with H-atoms: **2a** (E = 31.2kcal/mol; GBSA Steric Energy = 18.6 kca/mol; Dielectric constant: 1; Dipole moment: 4.2); **3b** (E = 34.7kcal/mol; GBSA Steric Energy = 22.3kca/mol; Dielectric constant: 1; Dipole moment: 4.2); **3c** (E = 38.8kcal/mol; GBSA Steric Energy = 25.8kcal/mol; Dielectric constant: 1; Dipole moment: 5.0); **3d** (E = 56.0kcal/mol; GBSA Steric Energy = 41.4kcal/mol; Dielectric constant: 1; Dipole moment: 6.0); **2e** (E = -3.0kca/mol; GBSA Steric Energy = -15.6 kca/mol; Dielectric constant: 1; Dipole moment: 3.1); GBSA: Generalized Born Surface Area

14. Reference

1. Biswas, S.; Abo-Dya, N. E.; Oliferenko, A.; Khiabani, A.; Steel, P. J.; Alamry, K. A.; Katritzky, A. R., Oxyazapeptides: A New Peptidomimetics Family. Synthesis, Structure Determination and Conformational Analysis. *Journal of Organic Chemistry*. **2013**, 78, 8502–8509 2. Lee, H.-J.; Choi, K.-H.; Ahn, I.-A.; Ro, S.; Jang, H. G.; Choi, Y.-S.; Lee, K.-B., The β -turn preferential solution conformation of a tetrapeptide containing an azaamino acid residue. *Journal of Molecular Structure* **2001**, *569* (1-3), 43-54.