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1 SUPPLEMENTARY METHOD
1.1 Non-equilibrium molecular dynamics (NEMD) method

Planar shock wave is produced by slamming the sample upon against a piston. A shock wave propagates
into a single crystal Cu target, achieving a supported high pressure and high temperature shock state.
Three directions are explored: (010) for x-axis, (001) for y-axis and (100) for z-axis. Periodic boundaries
are applied along the x- and y-axes, and a fixed boundary is adopted along the z-axis. Different system
sizes have been used to check the convergence of simulations, as shown in Table. S1. The results from
these system sizes are consistent with previous works. System sizes of 2160000 atoms is used in NEMD
simulations (Fig. S1). The trajectories of atoms under different pressure (32, 75, 88, 98, 180 GPa)
corresponding to different piston velocity (0.76, 1.43, 1.6, 1.73, 2.65 km/s) have been shown in MP4 files.
1.2 Multi-Scale Shock Technique (MSST) method

The method simulates the propagation of shock waves using the Euler equations for compressible flow.
Based on the conservation of mass, momentum, and energy, respectively, everywhere in the wave. It is a
tractable method that operates constant shock velocity by time-evolving equations of motion for the atoms
and volume of the computational cell to constrain the shock propagation direction stress to the Rayleigh
line and energy to the Hugoniot energy condition. For a specified shock speed, the Hugoniot relations
describe a steady planar shock wave within continuum theory. The Hugoniot relations can be determined
as,

u=vs(1-ρ0ρ ),
p− p0=vs2ρ0(1-ρ0ρ ),
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Here u is particle velocity, vs is shock speed, ρ is the density, e is the energy per unit mass, and p is
pressure in the direction of shock propagation. The molecular dynamics simulation utilize a well-established
extended Lagrangian approach,
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where T and V are kinetic and potential energies per unit mass, Q is a masslike parameter for simulation
cell size, and υ is the specific volume. The equation of motion for the system volume is

Qϋ=∂T∂v -∂V∂v -p0- v
2
s

υ20
(υ0 − υ).

The detailed description of MSST method can be discussed in ref(Reed et al., 2003) by Reed et al.
1.3 Adaptive Common neighbor analysia (a-CNA) method

In this technique, the local structures are analyzed by the environment of the pairs. A characteristic
signature is captured from the topology of bonds that connect the surrounding neighbor atoms. A sequence
of three criteria specifies the pairs of atoms. The first criterion is the number of near-neighbors shared by
the root pair of atoms. The second criterion is the number of bonds between these common neighbours.
The third criterion is the number of bonds in the longest continuous chain. These three characters are
sufficient to characterize the classification of pairs of atoms with a specified cutoff distance of each other.
Different types of pairs are associated with different types of local order, in particular FCC, HCP, BCC, and
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OTHER. The right cutoff radius is hard to be found, but the a-CNA determines the optimal cutoff radius
automatically (detailed in ref(Tsuzuki et al., 2007; Stukowski, 2012)).
1.4 Effective coordination number (ECN) method

The standard coordination number (CN) takes into account that a particular atom is surrounded by
atoms at different distances, while the CN attributes a unique weight for all bonds independently of bond
lengths. Thus, the values obtained for the CN depend on the cutoff bond length. The ECN concept can be
independent of the choice of the bond cutoff, and therefore provides a more accurate method to determine
possible structural trends with different bond lengths in disordered structures. The ECN and bond length
for all atoms in the cluster can be obtained by an exponential averaging function. The ECNi is obtained by
the following set of equations:

ECNi=Σjexp[1-( dij
diav

)6],

where dij is the distance between atom i and j, while diav is defined as

diav=
Σjdijexp[1−(

dij

diav
)6]

Σjexp[1−(
dij

diav
)6]

in which diav is obtained self-consistently, i.e., |diav(new)− diav(old) < 0.0001|. The average ECN and
dav for a particular configuration are obtained by

ECN= 1
NΣN

i=1ECNi

and

dav= 1
NΣN

i=1d
i
av, where N is the total number of atoms in the cluster (detailed in ref(Piotrowski et al.,

2010)).
1.5 Free energy calculations

Standard equilibrium free energy calculations are often performed by the construction of a series of
equilibrium states on a path between two thermodynamic states of interest. In addition, every state requires
a separate simulation for sufficient equilibration. The free energy difference (4F) between two states of
interest is obtained by computing ensemble averages of a set of the relevant these states, followed by
numerical integration. The method related4F to the reversible work Wrev along a quasistatic path. For a
system of N particles in NV T ensemble, the Hamiltonian is given by H(Γ, λ), Γ is a point in the phase
space and λ is a parameter. The canonical partition function of system is:

Z(N, V, T ;λ)=
∫
dΓ
h3N

exp[-βH(Γ, λ)],
the Helmholtz free energy of this system is:

F (N, V, T ;λ)=-kBTlnZ(N, V, T ;λ),
where β= 1

kBT , kB is the Boltzmann constant and h is Planck’s constant. Consider two thermodynamic
states characterized by different λ from 0 to 1, the parametrical Hamiltonian H(λ) is given by

H(λ)=λHf+(1-λ)Hi,
where Hi and Hf represent two different Hamiltonians. The desired free energy difference can be obtained
by the derivative of the Helmholtz free energy with respect to λ,

∂F
∂λ = 1

Z

∫
dΓ
h3N

∂H
∂λ exp[-βH(Γ, λ)]=

〈
∂H
∂λ

〉
λ
,

where 〈...〉λ is canonical ensemble average for a particular value of λ, the free energy difference is equal to
the intergration of this differential equation,
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4F=F (λf )-F (λi)=
∫ λf
λi

dλ
〈
∂H
∂λ

〉
λ
≡ W rev

i→f ,
Where i and f are states of interest and reference, respectively. In the equilibrium thermodynamic
integration (TI) method, the integration is equal to reversible work along a quasistatic path between two
equilibrium states of interest. In contrast to a quasistatic process, the work done along a nonequilibrium
process is the irreversible work, and the dissipated heat is generated along the path. The nonequilibrium
approaches, related4F to the irreversible work by connecting its mean value to the reversible work, are
performed sufficiently closed to ideally quasistatic process between two equilibrium states of interest. The
average dissipated heat for two processes between i and f states are the same (i.e. Edissi→f=Edissf→i). So, the
expression is given by

4F=Wrev=Wirr-Ediss=1
2 [( W irr

i→f -Edissi→f )-( W irr
f→i-E

diss
f→i)]=

1
2 (W irr

i→f -W irr
f→i).

The nonequilibrium approach estimates the path in terms of an explicitly time dependent process with
the function of λ=λ(t), the irreversible work between two states ( λi(t=0)=0, λf (t=ts)=1) is given by

W irr
i→f=

∫ 1
0 dλ

〈
∂H
∂λ

〉
λ
=
∫ ts

0 dt
dλ
dt (∂H

∂λ )Γ (t),
where ts is a switching time. For computing the free energy of solid, the reference system of Einstein
crystal FE(N, V, T ) is chosen, detailed discussion can be found in ref(Freitas et al., 2016). In the canonical
ensemble (NV T ) the Helmholtz free energy F is given by the following expression:

F (N, V, T ) = FE(N, V, T ) +4F ,
then, the Gibbs free energy G can be obtained as:

G = F (N, V, T ) + PV .

The shock-induced BCC structures are generated by MSST simulations in the shock velocity of 6.4
and 7.4 km/s, corresponding to 97 GPa, 1600 K and 156 GPa, 3400 K. To avoid the occurrence of
structural transformation, we restricted the free energy calculations of shock-induced BCC structure around
the Hugoniot curves. The FCC and shock-induced BCC structures including 24000 atoms are relaxed
in NPT ensembles for 100, 200, 300, 400 and 500 ps under the pressure of 120∼175 GPa. Then the
nonequilibrium thermodynamic integration (ne-TI) are kept for NV T ensembles in simulations. The
system is set equilibrium for 100 ps before the switching starts, followed by a persisting 200 ps switching
duration time. Synthesizing both simulations, we found no sign of phase transition under 6.4 km/s since
the Gibbs free energy difference between FCC and shock-induced BCC phase is positive from 1000 K to
3000 K. While, for shock velocity under 7.4 km/s, as presented in Fig. S6, we found the phase transition is
triggered. The fitting curves are obtained by second order polynomial functions(Straatsma and Berendsen,
1988; Taniuchi and Tsuchiya, 2018).
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2 SUPPLEMENTARY TABLES AND FIGURES
2.1 Tables

Table S1. Different size of the configurations for NEMD simulations along z-direction. u is piston velocity, ρ0 is initial density, ρ is the density after the
impact, and P is shock pressure.

No. of atoms Size(nm) Orientation u(km/s) ρ0(g/cm3) ρ(g/cm3) P(GPa)x y z x y z
216×104 10.85 10.85 216.9 010 001 100 1.60 8.81 11.86 88.71

1944×104 32.54 32.54 216.9 010 001 100 1.60 8.81 11.87 88.57
5400×104 54.23 54.23 216.9 010 001 100 1.60 8.81 11.87 88.57

2.2 Figures

Figure S1. NEMD simulations of Cu under shock compression. The initial configuration of simulation
(left panel) and the structures under different pressures (right panel).
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Figure S2. Longitudinal stress vs volume compressions for compressed copper. (a) The results of NEMD
and MSST simulations based on EAM potential in comparison with previous Hugoniot curve and DFT
results. Five typical piston velocities ( 0.763, 1.43, 1.6, 1.73, 2.65 km/s) have been simulated by NEMD
approach. (b) Different configurations are compared for MSST simulations.

Figure S3. Structural transformation path of shock compression through MSST simulation are presented.
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Figure S4. The ECN distribution of atoms with four structure types under different shock pressure.

Figure S5. The RDF curves of different crystals. Black solid line denotes the RDF of initial FCC, red
solid line denotes the RDF of perfect BCC under static pressure of 156 GPa, blue short dot denotes
shock-induced BCC under shock pressure of 156 GPa, and purple solid line denotes the RDF of liquid
copper under static pressure of 156 GPa.
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Figure S6. The free energy differences between FCC and shock-induced BCC under four temperatures.
The free energy of FCC and shock-induced BCC have been calculated in large range of pressure, every
data are averaged by three points. The curves were second-order polynomials. Dot line denotes the free
energy differences equal to zero, corresponding to the phase transition.
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