Supplementary Material

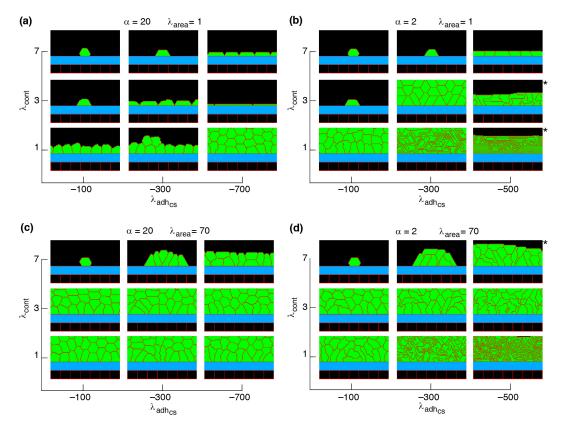


Figure S1: Phase diagram of collective cell morphologies with random orientation of cell proliferation. $\alpha = \lambda_{\rm adh_{cs}}/\lambda_{\rm adh_{cc}}$. *Slow-growing multilayers. See Movies 9, 10.

Movie captions

- **Movie 1.** A simulation of a monolayer of squamous cells, where the axis of cell proliferation is perpendicular to the substrate, i.e., $n_{\rm div} = (1,0)$; see Equation (3). Simulation parameters are: $\lambda_{\rm area} = 1$, $\lambda_{\rm cont} = 7$, $\lambda_{\rm adh_{cs}} = -700$, and $\lambda_{\rm adh_{cc}} = -35$.
- Movie 2. A simulation of a monolayer of cuboidal cells, where the axis of cell proliferation is perpendicular to the substrate, i.e., $n_{\rm div}=(1,0)$; see Equation (3). Simulation parameters are: $\lambda_{\rm area}=1, \, \lambda_{\rm cont}=1, \, \lambda_{\rm adh_{cs}}=-700, \, {\rm and} \, \lambda_{\rm adh_{cc}}=-35.$
- Movie 3. A simulation of a monolayer of columnar cells. Simulation parameters are: $\lambda_{\text{area}} = 70$, $\lambda_{\text{cont}} = 7$, $\lambda_{\text{adh}_{cs}} = -700$, and $\lambda_{\text{adh}_{cc}} = -35$. The axis of cell proliferation is perpendicular to the substrate, i.e., $n_{\text{div}} = (1,0)$; see Equation (3).
- **Movie 4.** A simulation of a multilayer structure, where the axis of cell proliferation is perpendicular to the substrate, i.e., $n_{\rm div} = (1,0)$; see Equation (3). Simulation parameters are: $\lambda_{\rm area} = 70$, $\lambda_{\rm cont} = 1$, $\lambda_{\rm adh_{cs}} = -700$, and $\lambda_{\rm adh_{cc}} = -35$.
- **Movie 5.** A simulation of a monolayer of cuboidal cells, where the axis of cell proliferation is perpendicular to the substrate, i.e., $n_{\rm div} = (1,0)$; see Equation (3). Simulation parameters are: $\lambda_{\rm area} = 1$, $\lambda_{\rm cont} = 1$, $\lambda_{\rm adh_{cs}} = -100$, and $\lambda_{\rm adh_{cc}} = -5$.
- **Movie 6.** A simulation of a non-confluent structure. Simulation parameters are: $\lambda_{\text{area}} = 1$, $\lambda_{\text{cont}} = 3$, $\lambda_{\text{adh}_{cs}} = -300$, and $\lambda_{\text{adh}_{cc}} = -15$. The axis of cell proliferation is parallel to the substrate, i.e., $n_{\text{div}} = (0, 1)$; see Equation (3).
- Movie 7. A simulation of a multilayer structure, where the axis of cell proliferation is parallel to the substrate, i.e., $n_{\rm div}=(0,1)$; see Equation (3). Simulation parameters are: $\lambda_{\rm area}=70$, $\lambda_{\rm cont}=3$, $\lambda_{\rm adh_{cs}}=-300$, and $\lambda_{\rm adh_{cc}}=-150$.
- Movie 8. A simulation of a monolayer, where the axis of proliferation is along the major axis of the cells. Simulation parameters are: $\lambda_{\rm area} = 70$, $\lambda_{\rm cont} = 7$, $\lambda_{\rm adh_{cs}} = -700$, and $\lambda_{\rm adh_{cc}} = -35$.
- Movie 9. A simulation of a monolayer of squamous cells, with random orientation of cell proliferation. Simulation parameters are: $\lambda_{\rm area} = 1$, $\lambda_{\rm cont} = 3$, $\lambda_{\rm adh_{cs}} = -300$, and $\lambda_{\rm adh_{cc}} = -15$.
- Movie 10. A simulation of a multilayer structure, with random orientation of cell proliferation. Simulation parameters are: $\lambda_{\rm area} = 70$, $\lambda_{\rm cont} = 3$, $\lambda_{\rm adh_{cs}} = -300$, and $\lambda_{\rm adh_{cc}} = -150$.