

Hyperoxygenation during mid-neurogenesis accelerates cortical development in the fetal mouse brain

Franz Markert and Alexander Storch

Supplementary Figures:

- **Supplementary Figure S1.** Example for the determination of the volume of the cortical plate.
- **Supplementary Figure S2.** Effects of maternal hyperoxygenation on the absolute number of layer specific neurons.
- **Supplementary Figure S3.** Effects of maternal hyperoxygenation on the distribution of microglia in a P16.5 and P3.5 mouse cortex.
- **Supplementary Figure S4.** Effects of hyperoxygenation on the total number of microglia within the developing cortex.
- **Supplementary Figure S5.** Iba1⁺ cells are able to target Satb2⁺ cells.

Supplementary Tables:

- Supplementary Table S1. Statistics determined for NeuN⁺ cortical neurons.
- **Supplementary Table S2.** Statistics determined for Tbr1⁺ cortical neurons.
- **Supplementary Table S3.** Statistics determined for Ctip⁺/Tbr1⁻neurons.
- **Supplementary Table S4.** Statistics determined for Satb2⁺ cortical neurons.
- **Supplementary Table S5.** Statistics determined for apical Iba1⁺ cells.
- **Supplementary Table S6.** Statistics determined for subplate/layer 6 (SP/L6) Iba1⁺ cells.
- **Supplementary Table S7.** Statistics determined for layer 5 (L5) Iba1⁺ cells
- **Supplementary Table S8.** Statistics determined for layer 4-1 (L4-1) Iba1⁺ cells.
- **Supplementary Table S9.** Statistics determined for absolute CC3⁺ cell counts.
- **Supplementary Table S10.** Statistics determined for vGluT2⁺ synapses in L5.
- Supplementary Table S11. Statistics determined for absolute Tbr1⁺ neuron counts.
- **Supplementary Table S12.** Statistics determined for absolute Ctip⁺/Tbr1⁻ neuron counts.
- **Supplementary Table S13.** Statistics determined for absolute Satb2⁺ neuron counts.
- **Supplementary Table S14.** Statistics determined for total Iba1⁺ cell counts.

Supplementary Figure S1. Example for the determination of the volume of the cortical plate (CP). Every 6^{th} Hoechst stained slice of a mouse brain was outlined as shown in the figure (left to right: rostral, middle and caudal section) and used to calculate the volume. Scale bar, 1000 μ m.

Supplementary Figure S2. Effects of maternal hyperoxygenation on the absolute number of layer specific neurons. Quantification of absolute Tbr1⁺, Ctip2⁺/Tbr1⁻ and Satb2⁺ cells within 250 μ m wide cortical columns of E16.5, P0.5 and P3.5 mice. Data are means±s.e.m. (n = 4). * *p*<0.05, ** *p*<0.01, *** *p*<0.001 from two-way ANOVA with *post-hoc* two-sided t-test with Bonferroni correction. For full statistics, see **Supplementary Tables S11-S13**.

Supplementary Figure S3: Effects of fetal brain hyperoxygenation on the distribution of microglia in E16.5 and P3.5 mouse cortex. Representative fluorescent images of Iba1⁺ cells (orange) from (a) E16.5 and (b) P3.5 in the middle cortical sections along the rostro-caudal axis–of hyperoxia treated and control mice showed no differences. Ctip2⁺ (green) was used for layer determination and Hoechst (blue) was used to stain cell nuclei. Scale bars represent 100 μ m.

Supplementary Figure S4. Effects of hyperoxygenation on the total number of microglia within the developing cortex. Quantification of the total number of Iba1⁺ microglia showed no differences with respect to hyperoxia treatment. Data are means±s.e.m. (n = 4). * p<0.05, ** p<0.01, *** p<0.001 from two-way ANOVA with *post-hoc* two-sided t-test with Bonferroni correction. For full statistics, see **Supplementary Table S14**.

Supplementary Figure S5. $Iba1^+$ cells are able to target $Satb2^+$ cells. Representative z-stack images of a microglia cell (white arrow) targeting $Satb2^+$ cells (red arrow) in a P0.5 mouse cortex. Scale bars represent 10 μ m.

Supplementary Tables

Supplementary Table S1. Statistics determined for NeuN⁺ cortical neurons in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Figure 1e**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have a significant interaction effect on NeuN⁺ neuron counts (p=0.028, F-value=4.2) and significant differences among atmospheric oxygen concentrations (p=0.006, F-value=8.8) and developmental stages (p<0.001, F-value=9.3). Displayed are Bonferroni-adjusted *P*-values (E16.5: n=4 [control], n=3 [hyperoxia]; P0.5: n=8 [control], n=6 [hyperoxia]; P3.5: n=4 [control], n=6 [hyperoxia]). (A) Significances among the different atmospheric oxygen concentrations. (**B**) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O2) vs. Hyperoxia (75% O2)	0.005	0.013	0.581

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	0.0459	1
E16.5 vs. P3.5	< 0.001	0,769
P0.5 vs. P3.5	0.011	1

Supplementary Table S2. Statistics determined for Tbr1⁺ cortical neurons in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Figure 2b**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on Tbr1⁺ neuron counts (p=0.210, F-value=1.7), but significant differences among atmospheric oxygen concentrations (p=0.006, F-value=9.8) and developmental stages (p<0.001, F-value=84.3). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances

A

	E16.5	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	0.004	0.333	0.278

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	< 0.001	0.002
E16.5 vs. P3.5	< 0.001	< 0.001
P0.5 vs. P3.5	0.005	0.004

Supplementary Table S3. Statistics determined for $Ctip^+/Tbr1^-$ cortical neurons in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Figure 2c**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have a significant interaction effect on $Ctip^+/Tbr1^-$ cortical neuron counts (*p*=0.002, F-value=9.5) and significant differences among atmospheric oxygen concentrations (*p*<0.001, F-value=49.2) and developmental stages (*p*=0.002, F-value=49.2). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances

A

	E16.5	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	< 0.001	< 0.001	0.629

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	0.135	0.092
E16.5 vs. P3.5	0.003	< 0.001
P0.5 vs. P3.5	0.309	< 0.001

Supplementary Table S4. Statistics determined for Satb2⁺ cortical neurons in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Figure 2d**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment (n = 4) with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on Satb2⁺ neuron counts (p=0.922, F-value=0.1), no significant differences among atmospheric oxygen concentrations (p=0.922, F-value=3.6), but significant differences among developmental stages (p=0.048, F-value=3.6). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	0.411	0.748	0.437

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	0.141	0.369
E16.5 vs. P3.5	0.720	0.774
P0.5 vs. P3.5	1	1

Supplementary Table S5. Statistics determined for apical Iba1⁺ cells in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during mid-neurogenesis (**Figure 4b**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on apical Iba1⁺ cell counts (p=0.465, F-value=0.8) and no significant differences among atmospheric oxygen concentrations (p=0.363, F-value=0.9), but significant differences among developmental stages (p<0.001, F-value=20.9). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	0.146	0.819	0.744

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	0.605	0.020
E16.5 vs. P3.5	0.003	< 0.001
P0.5 vs. P3.5	0.049	0.064

Supplementary Table S6. Statistics determined for subplate/layer 6 (SP/L6) Iba1⁺ cells in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Figure 4c**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on SP/L6 Iba1⁺ cells counts (p=0.295, F-value=1.3) and no significant differences among atmospheric oxygen concentrations (p=0.203, F-value=1.7), but significant differences among developmental stages (p<0.001, F-value=38.6). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O2) vs. Hyperoxia (75% O2)	0.942	0.054	0.772

	Normoxia (21% O ₂₎)	Hyperoxia (75% O ₂)
E16.5 vs. P0.5	0.096	< 0.001
E16.5 vs. P3.5	< 0.001	< 0.001
P0.5 vs. P3.5	0.005	0.211

Supplementary Table S7. Statistics determined for layer 5 (L5) Iba1⁺ cells in various development stages (P0.5, P3.5) after different oxygen exposures during mid-neurogenesis (**Figure 4d**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have a significant interaction effect on L5 Iba1⁺ cells counts (p=0.014, F-value=8.1) and significant differences among atmospheric oxygen concentrations (p=0.003, F-value=13.2) and developmental stages (p<0.001, F-value=37.5). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	P0.5	P3.5
Normoxia (21% O2) vs. Hyperoxia (75% O2)	< 0.001	0.588

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
P0.5 vs. P3.5	< 0.001	0.039

Supplementary Table S8. Statistics determined for layer 4-1 (L4-1) Iba1⁺ cells in various development stages (P0.5, P3.5) after different oxygen exposures during mid-neurogenesis (**Figure 4e**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on L4-1 Iba1⁺ cells counts (p=0.945, F-value=0.0) and no significant differences among atmospheric oxygen concentrations (p=0.945, F-value=0.0), but significant differences among developmental stages (p<0.001, F-value=85.8). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	0.920	1.000

	Normoxia (21% O ₂₎)	Hyperoxia (75% O ₂)
P0.5 vs. P3.5	< 0.001	< 0.001

Supplementary Table S9. Statistics determined for $CC3^+$ cell counts in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during mid-neurogenesis (**Figure 7b**). Robust ANOVA using raov function from Rfit package with *post-hoc* unpaired Wilcoxon-test and Bonferroni adjustment (n = 3) with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have a significant interaction effect on $CC3^+$ cell counts (*p*=0.001, F-value=9.1) and significant differences among atmospheric oxygen concentrations (*p*=0.004, F-value=10.4) and developmental stages (*p*<0.001, F-value=30.1). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O2) vs. Hyperoxia (75% O2)	0.564	0.008	1.000

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	0.014	0.024
E16.5 vs. P3.5	0.075	0.107
P0.5 vs. P3.5	0.276	0.786

Supplementary Table S10: Statistics determined for vGluT2⁺ synapses in L5 (P0.5, P3.5) after different oxygen exposures during mid-neurogenesis (**Figure 8**). Two-way ANOVA with *post-hoc* t-test with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have a significant interaction effect on VGlut2⁺ synapses (p=0.046, F-value=4.7) and significant differences among atmospheric oxygen concentrations (p=0.030, F-value=5.6), but no significant differences among developmental stages (p=0.371, F-value=0.8). Displayed are *P*-values (n = 5). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	P0.5	P3.5
Normoxia (21% O2) vs. Hyperoxia (75% O2)	0.006	0.881

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
P0.5 vs. P3.5	0.394	0.045

Supplementary Table S11. Statistics determined for absolute Tbr1⁺ cortical neuron counts in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Supplementary Figure S2a**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on Tbr1⁺ neuron counts (p=0.780, F-value=0.3) and no significant differences among atmospheric oxygen concentrations (p=0.338, F-value=1.0), but significant differences among developmental stages (p=0.014, F-value=5.5). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	0.654	0.895	0.278

	Normoxia (21% O ₂₎)	Hyperoxia (75% O ₂)
E16.5 vs. P0.5	0.567	0.327
E16.5 vs. P3.5	1.000	0.852
P0.5 vs. P3.5	0.261	0.036

Supplementary Table S12. Statistics determined for absolute $Ctip2^+/Tbr1$ -neuron counts in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Supplementary Figure S2b**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have a significant interaction effect on $Ctip2^+/Tbr1^-$ neuron counts (p<0.001, F-value=10.8) and significant differences among atmospheric oxygen concentrations (p<0.001, F-value=53.2) and developmental stages (p<0.001, F-value=19.1). Displayed are Bonferroni-adjusted *P*-values (n = 4). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	< 0.001	< 0.001	0.574

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	0.047	< 0.001
E16.5 vs. P3.5	0.208	0.057
P0.5 vs. P3.5	1.000	< 0.001

Supplementary Table S13. Statistics determined for absolute Satb2⁺ cortical neuron counts in various development stages (E16.5, P0.5, P3.5) after different oxygen exposures during midneurogenesis (**Supplementary Figure S2c**). Two-way ANOVA with *post-hoc* t-test and Bonferroni adjustment (n = 4) with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on Satb2⁺ neuron counts (p=0.828, F-value=0.2), no significant differences among atmospheric oxygen concentrations (p=0.066, F-value=3.8), but significant differences among developmental stages (p<0.001, F-value=76.9). (A) Significances among the different atmospheric oxygen concentrations. (B) Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O2) vs. Hyperoxia (75% O2)	0.153	0.225	0.527

	Normoxia (21% O ₂₎)	Hyperoxia (75% O2)
E16.5 vs. P0.5	< 0.001	< 0.001
E16.5 vs. P3.5	< 0.001	< 0.001
P0.5 vs. P3.5	0.573	1.000

Supplementary Table S14. Statistics determined for total Iba1⁺ cell counts (E16.5, P0.5, P3.5) after different oxygen exposures during mid-neurogenesis (**Supplementary Figure S4**). Twoway ANOVA with *post-hoc* t-test and Bonferroni adjustment with atmospheric oxygen concentrations and development stage as fixed factors revealed that atmospheric oxygen concentration and developmental stage have no significant interaction effect on total Iba1⁺ cell counts (p=0.643, F-value=0.5), but significant differences among atmospheric oxygen concentrations (p=0.030, F-value=5.5) and significant differences among developmental stages (p=0.034, F-value=4.1). Displayed are Bonferroni-adjusted *P*-values (n = 4). Significances among the different developmental stages. Bold values indicate significant differences.

A

	E16.5	P0.5	P3.5
Normoxia (21% O ₂) vs. Hyperoxia (75% O ₂)	0.144	0.069	0.541

	Normoxia (21% O ₂)	Hyperoxia (75% O2)
E16.5 vs. P0.5	1.000	0.989
E16.5 vs. P3.5	0.072	0.411
P0.5 vs. P3.5	0.234	1.000