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Model Description 
 
1.1 Probability of male sibship 

 

We used a Bayesian model to estimate the probability that two male Tetragonula carbonaria 

in our dataset were brothers, given their alleles at seven microsatellite loci and the allele 

frequencies of our sampled population. Under this model, pairwise sibship probability is 

calculated as follows:  
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where -#$ is a variable indicating that males i and j are brothers, Gi and Gj are random variables 

which take values from the set of all possible genotypes for males i and j respectively, and .# 

and .$ are their actual genotypes. 

 
Equation (1) is equal to: 
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We can then consider each term in this equation in turn. First, the probability that males i and j 

have genotypes gi and gj if they are brothers can be expressed as: 

(2) 
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where 0#% 	is the random variable taking value from the set of all possible alleles at the k-th 

locus for male i , 0$%is the random variable taking value from the set of possible alleles at the 

k-th locus for male j, and .#% 	and .$% are the actual alleles of each male at that locus. 

 



Haploid male bees inherit one of their diploid mother’s two alleles at each locus. If we imagine 

a mother’s genotype to be A1A2, then the probability that brothers inherit the same allele (say, 

A1) is 0.5, and we denote the event as -#$ = 1. Likewise, the probability that brothers inherit 

different alleles (one brother inherits A1 and the other A2) is 0.5 and we denote the event as 

-#$ = 0. Therefore:  

(3) 
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Note that the alleles at the k-th locus of brothers may have the same value even under the 

condition -#$% = 0. This happens if the mother is homozygous at that locus (i.e. A1 = A2). 

 

We then estimate the probability of each condition in equation (3) based on the frequency of 

alleles in the total population, such that: 

(4) 
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And 
 

/"0#% = .#% , 0$% = .$%|-#$ = 1, -#$% = 03 = /(0#% = .#%) ∗ /"0$% = .$%3 
 
 

where the probability of carrying a given allele at the k-th locus (that is, /(0#% = .#%)) is equal 

to that allele’s frequency in our total sampled population:  
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Where B)!"#$%" is an indicator variable taking the value of 1 if .+%&.$%, and 0 otherwise.  

We similarly use population allele frequencies to calculate the probability of males i and j 

carrying their observed genotypes if they are not brothers:     

(6) 
/"0# = .# , 0$ = .$&-#$ = 0) 	= /(0# = .#) ∗ /(0$ = .$) 

 



where  
/(0# = .#) = Π%&'( /(0#% = .#%) 

and likewise, for /"0$ = .$3. 

 

Finally, we assume that the prior probability of two males being brothers, independent of any 

genotype information, is proportional to the total number of colonies contributing males to the 

sample set, S. Thus: 

(7) 
/"-#$ = 13 = 1/F 

 
And 
 

/"-#$ = 03 = 1 − 1/F 
 
 



1.2 Simulations  

 

We used a simulation-based approach to estimate the typical natal dispersal distances of male 

T. carbonaria. Males dispersed from their natal nests according to the exponential function:  

 

/(H) = I=,-. 

 

where H = metres	flown, I = 1/mean dispersal distance. For each of sample Sets 2 and 3, we 

ran simulations for 30 values of λ that represented mean male dispersal distances between 500m 

and 6500m. Each simulation followed these steps: 

 

i. Location of male-producing colonies. We generated a colony at a random site within 

a virtual study area. The virtual study area was a rectangle overlaid on the map of our 

actual study site, with all boundaries at least 30km away from any collection site (Fig 

S1). Colony locations were determined according to wr, where a random state 

wr∈1,2,3,…,100. We used onwater.io (https://onwater.io/) to assess whether simulated 

colonies fell onto water and reassigned them if so (Fig. S1).  

ii. Male genotypes. For each colony, we first assigned a queen genotype with independent 

random sets of alleles at each of seven loci, based on population allele frequencies. We 

then generated 3000 males per colony where males were randomly assigned one allele 

per locus from their mother. This number approximates total males produced by a strong 

colony in Sydney during spring in one month (see Results, this study).  

iii. Male dispersal. The distance flown by each male (d) was generated according to the 

distribution P(d) above. The final destination of each male was uniformly selected as a 

random point on the circle of circumference d, centred on the natal colony. That is, we 

assumed males were equally likely to fly away from the colony in all directions. Any 

males whose final destination was above water were allocated another final destination. 

iv. Male collection. Any males with final destinations within M metres of a collection site 

was added to that collection (Set 3, M = 500m, Set 2, M = 300m). A sensitivity analysis 

of M is provided in Supp. Material 1.3)  

v. End collection. We continued to simulate virtual colonies until the number of 

represented families in our virtual collection was equal to Nf (the number of males 



sampled in our actual dataset). If the number of virtually collected bees is larger than 

the number collected in the experiment, we randomly keep only a number of bees equal 

to the collected sample.  

vi. Cumulative Distribution Functions Finally, we calculated the sibship of each male 

pair in our simulated collection (as done for actual data above, Supplementary 

Material, 1.1) and obtained the cumulative distribution function, binned by the 

probability of sibship (0-0.05, 0.05-0.15, 0.15-0.25, ..., 0.85-0.95, 0.95-1). We 

calculated such CDFs for each of five values of S, representing different assumptions 

about the number of total colonies represented in our sample (Set 2, S = 201, 380, 475, 

570; Set 3, S=100, 300, 450, 600, 750, 900).  

vii. Simulations vs Observed data We assessed which values of λ (i.e which dispersal 

distributions) gave simulated datasets of male collections that most closely matched our 

actual datasets. For each λ, we took the geometric average of the area between the 

simulated and observed CDF curves. The lower the area, the more closely the simulation 

matched our real data.  

 



Fig S1. A map of our Set 3 collection site showing virtual simulated colonies ( black dots). The 

simulated colony locations were determined according to wr, where a random state 

wr∈1,2,3,…,100.  



1.3 Sensitivity analysis of M 
 

In our simulations, M is the distance that a male must pass within a requeening colony (i.e. a 

collection site) for the male to be included in our sample. In biological terms, it represents the 

range at which T. carbonaria males can detect a virgin queen’s pheromone (or other signal 

emitted by colonies in the requeening process). In honey bees, this distance has been estimated 

at 100m (Brockmann, Dietz, Spaethe, & Tautz, 2006), but for stingless bees it is unknown. We 

chose values ranging between 300 and 500m for Sets 2 and 3 respectively, which represent the 

largest possible area without causing overlap in the detection radius of our collection sites. To 

check that these values of M did not introduce significant variability in our results, we tested 

how the results for Set 3 (Sydney 2018) would change if M took different values (200m, 300m 

or 500m); Fig. S2 below. As each value of M gave similar mean dispersal distances for males, 

we conclude that our simulation results are robust within a reasonable range of possible values 

of M.  

 
Fig. S2. Cumulative distribution plots of the difference between simulated data and observed 
data based on Set 3 collections for three values of M (200, 300, 500m). These simulations ran 
with 600 total families, and minimum and maximum flight means of 100m and 4.2km, 
respectively.  
 



 

2.1 Detection error of the number of colonies contributing to male aggregations 

 

T. carbonaria male aggregations vary in size, but in some cases are very large. In our study, we 

typically genotyped only 200 males from large aggregations. To estimate what proportion of 

total colonies (families) contributing males to an aggregation would be detected from a sample 

of 200 males, we genotyped additional males for three large aggregations sampled in Set 1 

(507±28 males genotyped per aggregation). We then calculated the number of families 

represented in our sample using COLONY (Wang, 2004) for increasing intervals of 100 males 

and plotted the number of samples vs number of detected families (Python (Sanner, 1999). 

Based on these plots (Fig. S3), 200 males typically detected around 80% of the families 

contributing to large swarms. 

 
Fig. S3 Cumulative sampling distributions of estimated number of families contributing males 
to a mating aggregation in large swarms (Set 1, Sites 1-3). 
 



3.1. Evidence for male dispersal distances based on males with identical genotypes  
 
We manually sorted genotypes of all the males from set 2 and 3 to identify males that shared 

alleles at all seven loci. For the genotypes of each of these conservative sets of possible brothers, 

we then calculated the probability that two males in our population would share that genotype 

by chance, using the formula: 

 

T = 9' ∗ 9/ ∗ 90…∗ 9( 

 

where 9' is the frequency of the observed allele at locus 1, 9/ is the frequency of the observed 

allele at locus 2, etc. We then calculated the probability that the males’ shared a genotype by 

descent (i.e. were brothers), rather than chance, according to:  

 

T1 = (1 − T)* 

 

where n is the total sample size of all males sampled. In this way, we identified pairs of males 

that were carrying rare alleles in combinations that made it highly unlikely that they shared 

genotypes by chance alone. We considered pairs of males with T1 > 0.85 to be likely brothers, 

and T1 > 0.95 to be highly likely brothers. We then plotted the distance separating the sample 

location of these brother pairs (Fig S4). As for our sibship assignment using models and 

simulations (Supplementary Material, 1.1-1.3), this estimate revealed that the great majority 

of likely brothers were collected from the same or nearby aggregations, 0-7km apart (T1 > 0.85, 

N=310; T1 > 0.95, N=199), but a small number were sampled at aggregations separated by 

>10km (T1 > 0.85, N=15; T1 > 0.95, N=1); Fig S4.  



 
Fig S4. Distances between pairs of males sampled at mating aggregations (Sets 2 and 3), for 
males that share alleles at all seven loci analysed: (a) The number of these males with high 
probability of sibship sampled from mating aggregations separated by different distances (T1 > 
0.85, blue bars, n=325; T1> 0.95 (orange bars, n=200). Most of these likely pairs of brothers 
were collected from the same or nearby aggregations, but a small number were sampled at 
aggregations separated by >10km (T1 > 0.85, N=15; T1 > 0.95 , N=1). (b) the distance between 
pairs of sampled aggregations (sites) in our collections).  
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Table S2. Four replicates of mark-recapture of males at mating aggregations. A small proportion of our marked males reappeared at target mating 
aggregations within 48 hours when released at distances of 1-4.5km from the target aggregation (0.2 - 2.5% per replicate). In Replicates 1-3, we 
also released a subset of males directly underneath the target aggregation, of which 17-27% were then sampled in the aggregation. For Replicate 
4, we monitored two target swarms at different distances from the release sites.  
 

Replicates Total males 
marked  Males released 

per distance 
Distance from target mating 

aggregation/s (km) 

 
N males recaptured at target swarm 

 
24h 36h 48h 

1 1490 
 630 1 km 3 2 2 
 600 1 km 2 1 0 
 260 At target 34  13 10 

2 900 
 400 1 km 7 6 0 
 400 1 km 4 3 0 
 100 At target 17 10 0 

3 2100 
 1000 2.5 km 0 0 2 
 1000 4.5 km 0 0 2 
 100 At target 0 0 17 

4 1600 
target 1 800 2 km 0 1 0 

800 1.5 km 0 2 1 

target 2 800 1 km 0 16 4 
800 3 km 0 0 0 
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