## **Supporting Information**

## Metal-Free Synthesis of 2-Substituted Quinazolines via Green Oxidation of *o*-Aminobenzylamines: Practical Construction of *N*-Containing Heterocycles Based on a Salicylic Acid-Catalyzed Oxidation System

Yuki Yamamoto<sup>1</sup>, Chihiro Yamakawa<sup>1</sup>, Riku Nishimura<sup>1</sup>, Chun-ping Dong<sup>1</sup>,

Shintaro Kodama<sup>1\*</sup>, Akihiro Nomoto<sup>1</sup>, Michio Ueshima<sup>1</sup>, and Akiya Ogawa<sup>1\*</sup>

<sup>1</sup>Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan

skodama@chem.osakafu-u.ac.jp, ogawa@chem.osakafu-u.ac.jp

## **CONTENTS**

|                                                                                                                                         | Pages      |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------|
| Scheme S1. Comparison of the E-factor of some alternative methods for synthesis of                                                      | <b>S</b> 2 |
| quinazolines and this work                                                                                                              | ~-         |
| Figure S1. <sup>1</sup> H NMR spectrum of crude 3aa after the reaction (entry 17 in Table 1)                                            | S3         |
| Table S1. Optimization of reaction conditions for salicylic acid-catalyzed oxidation of                                                 | <b>S</b> 3 |
| benzylamine to the corresponding imine                                                                                                  | 33         |
| Copies of <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of compounds <b>3aa–3ah</b> , <b>3aj–3at</b> , and <b>3ba</b> | S4-S23     |
| Copies of <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of compounds <b>4a–4d</b>                                     | S24-S27    |
| Copies of <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of compounds <b>6a–6e</b> , <b>8</b> , and <b>9</b>           | S28-S34    |

## **Scheme S1**. Comparison of the E-factor of some alternative methods for synthesis of quinazolines and this work

(a) Previously reported methods for synthesis of quinazolines from amines • Chem. Commun. 2011, 47, 7818. (0.2 mmol) E-factor = 4.1 o-xylene (0.3 mL), 140 °C 4 h, O<sub>2</sub> (1 atm) (1 mmol) (3 mmol) 70% • RSC Adv. 2016, 6, 56892. NH<sub>2</sub> Mgl<sub>2</sub> (5 mol%) E-factor = 84.0 EtOAc (5 mL), O<sub>2</sub> (1 atm), irradiation (0.3 mmol) (0.3 mmol) 87% • Org. Biomol. Chem. 2016, 14, 10567. l<sub>2</sub> (10 mol%) E-factor = 2.4 neat, 80 °C, 5 h 83% (0.5 mmol) (2 mmol) • Tetrahedron Lett. 2017, 58, 2044. PhI(OAc)<sub>2</sub> (3.0 equiv.) E-factor = 26.9 CH<sub>2</sub>Cl<sub>2</sub> (3 mL), rt, 1 h (1.0 mmol) (1.0 mmol) 90% • Asian J. Org. Chem. 2017, 6, 432. Rose bengal (0.5 mol%) E-factor = 41.2 DMF (1 mL), O<sub>2</sub> (1 atm) irradiation, 20 h (0.15 mmol) (0.45 mmol) 78% • Org. Biomol. Chem. 2017, 15, 5781. FeBr<sub>2</sub> (10 mol%) E-factor = 6.5chlorobenzene (1 mL), 110 °C, 16 h, O<sub>2</sub> (1 atm) (1.0 mmol) (1.3 mmol) 90% • Eur. J. Org. Chem. 2018, 4628. NO<sub>2</sub> (30 mol%) E-factor = 9.2 CH<sub>3</sub>CN (2 mL), 110 °C 16 h, air (1.0 mmol) (1.0 mmol) 87% (b) This work (5 mol%) соон ÓН BF<sub>3</sub>•Et<sub>2</sub>O (10 mol%) E-factor = 2.7 DMSO (1.0 mL), 90 °C, 48 h, O<sub>2</sub> (0.1 MPa)

81%

(3.0 mmol)

(3.0 mmol)





**Table S1**. Optimization of reaction conditions for salicylic acid-catalyzed oxidation of benzylamine to the corresponding imine

| Entry | Additive (mg) | Time (h) | Yield <b>4a</b> (%) <sup>a</sup> |
|-------|---------------|----------|----------------------------------|
| 1     | -             | 2        | 14                               |
| 2     | -             | 4        | 26                               |
| 3     | -             | 16       | 79                               |
| 4     | -             | 24       | 73                               |
| 5     | 4A MS (100)   | 16       | 98 (87)                          |

<sup>&</sup>lt;sup>a</sup>Yields were determined by <sup>1</sup>H NMR spectroscopy (isolated yield)

Figure S2: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3aa





Figure S3: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ab





Figure S4: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ac





Figure S5: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ad





Figure S6: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ae





Figure S7: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3af



Figure S8: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ag





Figure S9: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ah





Figure S10: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3aj



Figure S11: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ak



Figure S12: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3al





Figure S13: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3am





**Figure S14**: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound **3an** 



Figure S15: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ao



**Figure S16**: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound **3ap** 



Figure S17: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3aq



Figure S18: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ar





Figure S19: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3as





Figure S20: Copies of  ${}^{1}H$  and  ${}^{13}C\{{}^{1}H\}$  NMR spectra of compound 3at



Figure S21: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 3ba





Figure S22: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 4a





Figure S23: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 4b





Figure S24: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 4c





Figure S25: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 4d





Figure S26: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 6a



Figure S27: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound **6b** 



Figure S28: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 6c





Figure S29: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 6d





Figure S30: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 6e





Figure S31: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 8





Figure S32: Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of compound 9



