## Supporting Information

# Metal-Free Synthesis of 2-Substituted Quinazolines via Green Oxidation of $\boldsymbol{o}$-Aminobenzylamines: Practical Construction of N -Containing Heterocycles Based on a Salicylic Acid-Catalyzed Oxidation System 

Yuki Yamamoto ${ }^{1}$, Chihiro Yamakawa ${ }^{1}$, Riku Nishimura ${ }^{1}$, Chun-ping Dong ${ }^{1}$, Shintaro Kodama ${ }^{1 *}$, Akihiro Nomoto ${ }^{1}$, Michio Ueshima ${ }^{1}$, and Akiya Ogawa ${ }^{1 *}$<br>${ }^{1}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan<br>\section*{skodama@chem.osakafu-u.ac.jp,ogawa@chem.osakafu-u.ac.jp}<br>\section*{CONTENTS}<br>Pages<br>Scheme S1. Comparison of the E-factor of some alternative methods for synthesis of quinazolines and this work<br>Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of crude 3aa after the reaction (entry 17 in Table 1)<br>Table S1. Optimization of reaction conditions for salicylic acid-catalyzed oxidation of benzylamine to the corresponding imineCopies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds 3aa-3ah, 3aj-3at, and 3ba<br>S4-S23<br>Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds $\mathbf{4 a}-\mathbf{4 d}$<br>..... S24-S27<br>Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compounds $\mathbf{6 a - 6 e}, \mathbf{8}$, and 9<br>..... S28-S34

Scheme S1. Comparison of the E-factor of some alternative methods for synthesis of quinazolines and this work
(a) Previously reported methods for synthesis of quinazolines from amines

- Chem. Commun. 2011, 47, 7818.



E-factor $=4.1$

- RSC Adv. 2016, 6, 56892.

- Org. Biomol. Chem. 2016, 14, 10567.


E-factor $=2.4$

83\%

- Tetrahedron Lett. 2017, 58, 2044.


E-factor $=26.9$

- Asian J. Org. Chem. 2017, 6, 432

- Org. Biomol. Chem. 2017, 15, 5781.

- Eur. J. Org. Chem. 2018, 4628.




E-factor $=9.2$
(b) This work



E-factor $=2.7$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of crude 3aa after the reaction (entry 17 in Table 1, in $\mathrm{CDCl}_{3}$ )


Table S1. Optimization of reaction conditions for salicylic acid-catalyzed oxidation of benzylamine to the corresponding imine

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (isolated yield)

Figure S2: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3aa



Figure S3: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{3 a b}$



Figure S4: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ac



Figure S5: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ad



Figure S6: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ae



Figure S7: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3af


Figure S8: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ag



Figure S9: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ah



Figure S10: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3aj
Pry Ex215 solated" 21 c:Users yuchDoskop

Figure S11: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ak


Figure S12: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3al



Figure S13: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3am



Figure S14: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3an


Figure S15: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ao



Figure S16: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ap



Figure S17: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3aq


Figure S18: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ar



Figure S19: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3as



Figure S20: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3at


Figure S21: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 3ba



Figure S22: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{4 a}$



Figure S23: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{4 b}$



Figure S24: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{4 c}$



Figure S25: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{4 d}$



Figure S26: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{6 a}$


Figure S27: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{6 b}$


Figure S28: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{6 c}$



Figure S29: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{6 d}$



Figure S30: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{6 e}$



Figure S31: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound $\mathbf{8}$



Figure S32: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of compound 9



