

Supplementary Material

Mechanochemical Strategies for the Preparation of SiO₂ – Supported AgAu Nanoalloy Catalysts

Rafael T. P. da Silva¹, Susana I. Córdoba de Torresi¹, Paulo F. M. de Oliveira^{1*}

¹Institute of Chemistry, University of São Paulo - Brazil

* Correspondence:

Paulo F. M. de Oliveira paulofmo@usp.br

Catalytic Reduction of 2-Nitroaniline	S2
XPS Data Acquisition and Analysis	S2
Supplementary Figure S1 – Particle size distribution of the the metallic nanoparticles	S3
Supplementary Figure S2 – HAADF-STEM and STEM-EDX characterization of the bimetallic materials.	S4
Supplementary Table S1 - ICP-OES analysis	S4
Supplementary Table S2 - Reaction yield for one-hour milling	S5
Supplementary Figure S3 - XPS spectra of the mechanochemically prepared samples	S6
Supplementary Table S3 – XPS elemental analysis	S7
Supplementary Figure S4 – Catalytic reduction of 2-NA to o-PDA	S8
Supplementary Figure S5 – Band shift in the range of 280 nm throughout the catalytic reduction on NA	

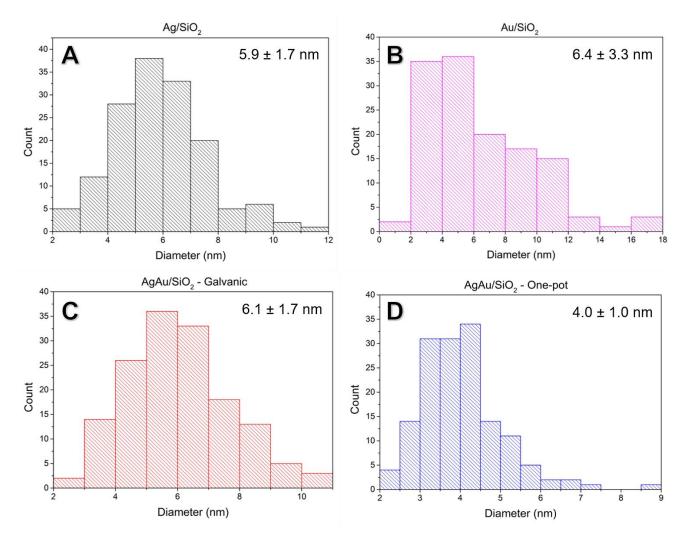
Catalytic Reduction of 2-Nitroaniline

A 1 mg·mL⁻¹ aqueous stock solution of each catalyst was prepared. In a cuvette, 2.8 mL of water, 120 μ L of 2-NA (6.25 mM), 130 μ L of NaBH₄ (2 mM) and, at last, the volume correspondent to 1.6 % (m/m) of metal/2-NA of each catalyst was added. The spectra were collected every 80 seconds. The determination of the reaction rate constant followed the pseudo first-order,

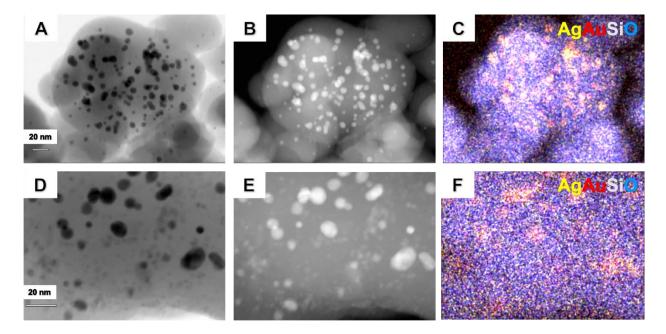
$$A = A_0 e^{-\frac{k}{t}}$$
(S1)

in which $A = A_{412}-A_{500}$, $A_0 =$ initial absorbance at 412 nm, k is the reaction rate constant and t is time. Each reaction was repeated three times. Between catalytic runs, the cuvette was washed with aqua regia and several times with water to eliminate any deposition of metals.

The conversion (%) was calculated by:


$$Conversion (\%) = \frac{A_0 - A}{A_0} \times 100$$
(S2)

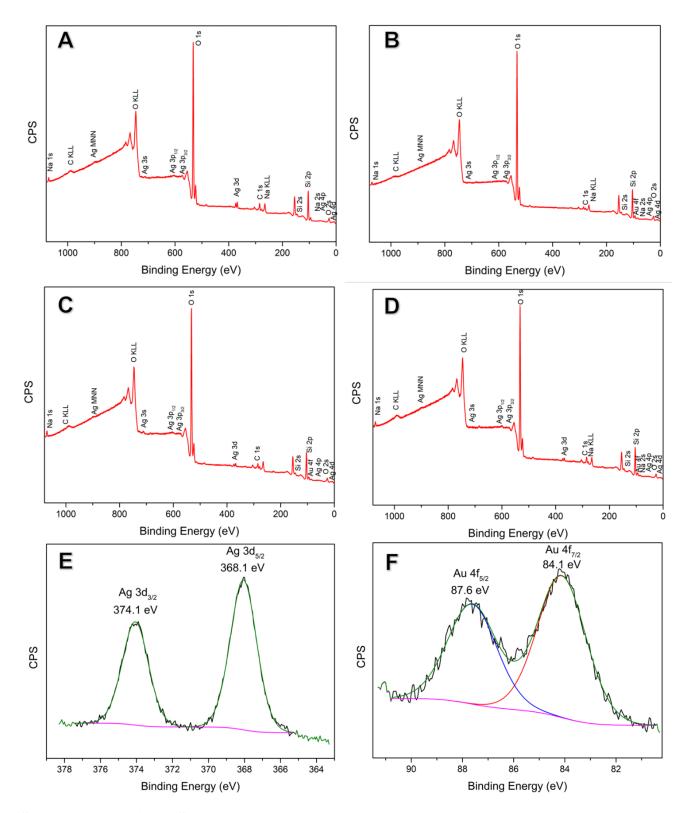
Considering Equation S1 and a pseudo-first order reaction, the linearization of the conversion curves followed:


$$\ln\left(\frac{C}{C_0}\right) = \ln\left(\frac{A}{A_0}\right) = -kt \tag{S3}$$

XPS Data Acquisition and Analysis

XPS spectra were collected using Mg K α line as a source of ionization (hv = 1256.6 eV) and the pass energy was adjusted to 15 eV. The inelastic scattering of XPS of Ag 3d and Au 4f were subtracted using Shirley's method. Composition of the surface (<5 nm) was determined by the relative proportional areas of the peaks corrected by the Scofield atomic sensitivity factor with a precision of ±5%. Binding energy were corrected using the hydrocarbon components (C-H) set at 284.9 eV. Spectra were deconvoluted using a Voigtian function with a convolution of Gaussian (70%) and Lorentzian (30%) functions. FWHM varied between 1.2 and 2.1 eV and the peak positions were determined with a precision of ± 0.1 eV.

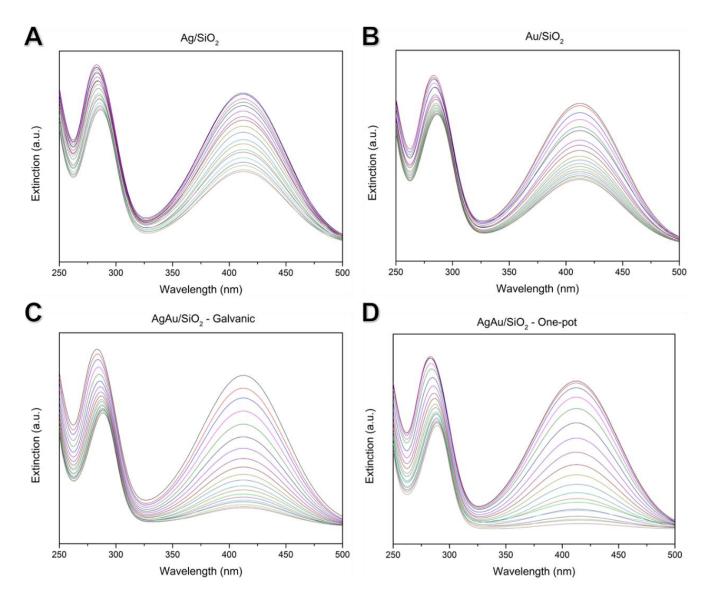
Supplementary Figure S1 – Particle size distribution of the the metallic nanoparticles on the synthesized materials. Ag/SiO_2 (A), Au/SiO_2 (B), $AgAu/SiO_2$ galvanic (C), $AgAu/SiO_2$ one-pot (D). For particle size distribution at least 150 individual particles were considered.

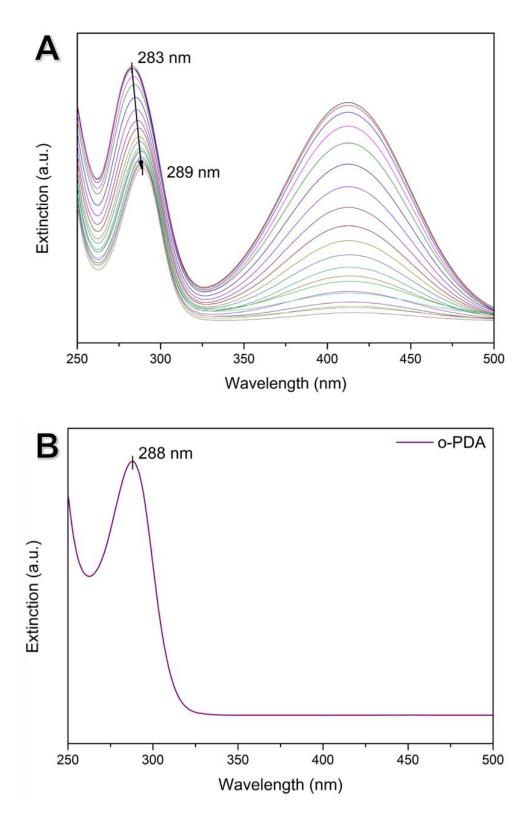

Supplementary Figure S2 – HAADF-STEM and STEM-EDX characterization of the bimetallic materials. AgAu/SiO₂ galvanic (A-C), AgAu/SiO₂ one-pot (D-F).

Sample	Total metal in sample (mass %)	Ag (mass %)	Au (mass %)
Ag/SiO ₂	2.50	100	-
Au/SiO ₂	2.84	-	100
AgAu/SiO ₂ galvanic	3.10	58	42
AgAu/SiO ₂ one-pot	2.73	36	64

Supplementary Table S1 - ICP-OES analysis

Supplementary Table S2 – Reaction yield for 1h-milling calculated from ICP-OES and metal salt added.


Sample	Initial amount of Ag (mass %)	Initial amount of Au (mass %)	Obtained amount of Ag (mass %)	Obtained amount of Au (mass %)	Yield Ag (%)	Yield Au (%)
Ag/SiO ₂	4.41	-	2.50	-	56.7	-
Au/SiO ₂	-	4.60	-	2.84	-	61.7
AgAu/SiO ₂ galvanic	2.50	1.60	1.80	1.29	72.0	80.6
AgAu/SiO ₂ one-pot	2.11	2.34	0.99	1.75	46.9	74.8


Supplementary Figure S3 - XPS spectra of the mechanochemically prepared samples. Survey spectra of Ag/SiO₂ (**A**), Au/SiO₂ (**B**), AgAu/SiO₂ Galvanic (**C**), AgAu/SiO₂ one-pot (**D**). HR-XPS for Ag 3d of Ag/SiO₂ (**E**) and Au 4f of Au/SiO₂ (**F**) regions.

Sample	Ag (mass %)	Au (mass %)
Ag/SiO ₂	100	-
Au/SiO ₂	-	100
AgAu/SiO ₂ galvanic	62	38
AgAu/SiO2 one-pot	62	38

Supplementary Table S3 – XPS elemental analysis

Supplementary Figure S4 – Catalytic reduction of 2-NA to o-PDA with NaBH₄ catalyzed by Ag/SiO₂ (**A**), Au/SiO₂ (**B**), AgAu/SiO₂ galvanic (**C**) and AgAu/SiO₂ one-pot (**D**).

Supplementary Figure S5 – Band shift in the range of 280 nm throughout the catalytic reduction of 2-NA (**A**) represents the formation of o-PDA (**B**).