Parasite-probiotic interactions in the gut: *Bacillus* sp. and *Enterococcus faecium* regulate type-2 inflammatory responses and modify the gut microbiota of pigs during helminth infection

Laura J. Myhill¹*, Sophie Stolzenbach¹*, Helena Mejer¹, Lukasz Krych², Simon R. Jakobsen¹, Witold Kot³, Kerstin Skovgaard⁴, Nuria Canibe⁵, Peter Nejsum⁶, Dennis S. Nielsen², Stig M. Thamsborg¹*, Andrew R. Williams¹*

Contents: Supplementary Figures 1-3 Supplementary Tables 1-5

dentatum infection

Supplementary Figure 1. Experimental set up. (A) At day -14, 48 pigs arrived and were fed one of three diets. At day 0, 24 pigs were inoculated with 25 *O. dentatum* third stage larvae (L3) / kg body weight, followed by similar inoculations three times a week until day 28 post-infection (p.i.). (B) Final number of animals per treatment group at termination of study at day 28 p.i.

Supplementary Figure 2

Figure S1: Pooled NMIT analysis according to probiotic supplementation (left) or *Oesophagostomum dentatum* (*Odent*) (right).

Supplementary Figure 3. Ex vivo cytokine secretion in pigs given LGG/Bb12

A) Phytohaemagglutinin-induced secretion of TNF α and IL-10 in ileal-caecal lymph node cultures. Pigs were either uninfected or infected with *O. dentatum* for 28 days, with or without supplementation of a mixture of LGG and Bb12 (LB). **B)** LPS-induced secretion of IL-1 β , IL-6, TNF α and IL-10 in peripheral blood mononuclear cells from pigs infected with *O. dentatum* for 28 days or uninfected pigs, with or without supplementation of LB. * *p* < 0.05 by GLM analysis. n=8 pigs per treatment group.

Supplementary Table 1. Primers used for qPCR.

Gene	Forward Primer (5' – 3')	Reverse Primer (5' – 3')	Amplicon
			Length
IL1A	TGTGCTAAATAACCTGGATGAGG	GGTTCGTCTTCGTTTTGAGC	135
IL1B	CCAAAGAGGGACATGGAGAA	GGGCTTTTGTTCTGCTTGAG	123
IL8	GAAGAGAACTGAGAAGCAACAACA	TTGTGTTGGCATCTTTACTGAGA	99
IL12B	GACCAGAAAGAGCCCAAAAAC	AGGTGAAACGTCCGGAGTAA	70
IL15	CGTCATTTTGCAAGAGTCCA	TGGACGATAAACTGCTGTTTGC	86
IL17A	GAGGTACCCCTCCGTGATCT	CTTCCTTCCCTTCAGCATTG	71
IFNG	:CCATTCAAAGGAGCATGGAT	TTCAGTTTCCCAGAGCTACCA	76
TNF	CCCCCAGAAGGAAGAGTTTC	CGGGCTTATCTGAGGTTTGA	92
TLR2	CGGAGGTTGCATATTCCACAG	TGTGAAAGGGAACAGGGAAC	128
TLR3	ATTGTGCAAAAGATTCAAGGTG	TCTTCGCAAACAGAGTGCAT	130
TLR4	TGGTGTCCCAGCACTTCATA	CAACTTCTGCAGGACGATGA	116
TLR7	AGAAGCCCCTTCAGAAGTCC	GGTGAGCCTGTGGATTTGTT	93
CD40	TGAGAGCCCTGGTGGTTATC	GCTCCTTGGTCACCTTTCTG	90
CD86	CATCGTCTGTGTCCTGCAAC	CACAGGTGGCTTTGCATCTA	82
CD163	CACATGTGCCAACAAAATAAGAC	CACCACCTGAGCATCTTCAA	130
PRF1	CTATGGCTGGGACGATGACC	CATGGTTCAAGGCGCACATC	86
GZMA	AAGGGGATCTTCAGCTGCTT	GGGGTTCGACATCTTTTCCT	99
GZMB	CCAGGACCAGGATAATCGAA	GGGTGACGTTGATTGAGCTT	101
KLRK	GATGGTTCCATCCTCTCACC	TGAGCCATAGACTGCACAGC	75
INOS	CAGCCCAAGGTCTATGTTCAAG	ATAGAGGTGGCCTTGCTCCT	90
CCL3	CTCTGCAGCCAGGTCTTCTC	CTACGAATTTGCGAGGAAGC	97
CXCL9	AGCAGTGTTGCCTTGCTTTT	ATGCAGGAACAACGTCCATT	92
IL4	GCAAACATGACCTGTTCTGTG	GCTTCAACACTTTGAGTATTTCTCC	105
IL5	GGGGAAAGATGGAGAGTAACG	CTTTCCATTGTCCACTCGGTA	83
IL13	CCAAGCGAGCAAGTTCCTG	AACTACCCGTGGCGAAAAAT	110
ARG1	TCCAAGGTCTGTGGGAAAAG	ATCGCCATACTGTGGTCTCC	108
CCL17	GGGTGGTACCAGACCTCAGA	GTCCTTGGGGTCAGAACAGA	90
CCL22	CCCTGCGTGTGGTGAAGTAT	ATCTCTCGGTCCCTCAAGGT	88
CCL26	CTGCTTCCAATACAGCCACA	AGCAGCTGTTCCTGGTGAAT	74
CCR4	GGACCCCTTACAATGTGGTG	GAATGGCGTAGTCCAGGTGT	96
IL10	TACAACAGGGGCTTGCTCTT	GCCAGGAAGATCAGGCAATA	110
TGFB1	TCACCGGGGCTGTATTTAAG	AAGGAAGACCCCAGTCAGGT	110
FOXP3	GAAGGACAGCACCCTTTCAA	AGGAAGTCCTCTGGCTCCTC	111
IL25	TGTGTCCACACTGTGTCAGC	GAAGACGGTCTGGTTGTGGT	89
IL4R	CAGAGCTGCCTGCTGTCAT	CTCTCCGGGATCTGAGGACT	80
IL13RA1	TCCCTCCAATTCCTGATCCT	TCCAGTGCAGGGTATCATCA	75
DCLK1	TAAGGCGCAGAGATACAGCA	GGTTCGGTAGAAGCTGCAAT	85
TSLP	ACTAAGGCTGCATTCGCACT	TTTTCCTCATTGCCTGGGTA	76
FFAR2	GCTTCGGGCCCTATAACATA	GCGTTGAGGGAGCTGAATAC	97
HDAC1	GGATCGGTTAGGTTGCTTCA	CCTCCCAGCATCAACATAGG	96
HDAC2	TGCAGTTCATGAAGACAGTGG	CACGCTATCCGTTTGTCTGA	87
HDAC3	GCTGCTGGACGTATGAGACA	GTCTGGATGGAGCGTGAAGT	110
HDAC6	CCCAAATCCATCGCAGATAC	GGCGAACGACTTAGAACTGG	86
HDAC9	GAACAGATGCGACAGCAAAA	CTTTTGTTGCCAAGGGAGAC	76
MCT1	CCGACTTCTGGCAAAAGAAC	GGCTTCTCAGCAGCGTCTAT	90
MUC1	GGATTTCTGAATTGTTTTTGCAG	ACTGTCTTGGAAGGCCAGAA	116
MUC2	GCACGTCTGCAACAAGGAC	CAAAGCCCTCCAGGCAGT	125

RETNLB	TCCCTCTGCTCCAAGAAAGA	CAAGCACAGCCAGTGACAAC	99							
SLC2A5	GGTCATCTCCACCATCATCC	GCGCTCAGGTAGATCTGGTC	90							
SLC5A1	TCTCATGAGCTCCCTGACCT	CTCTCTTCCGGATCTTGGTG	83							
SLC5A8	TGGGACAAATTGGATGACAA	CCATCAGTGGAGTCCTTTCAA	86							
TFF2	GCTGCTTCGACTCCCAAGT	CATGACGCACTCCTCAGACT	80							
TFF3	TGTTCTGGCTGCTAGTGGTG	CAGTCCACCCTGTCCTTGG	112							
IL6	TGGGTTCAATCAGGAGACCT	CAGCCTCGACATTTCCCTTA	116							
IL18	CAATTGCATCAGCTTTGTGG	TCCAGGTCCTCATCGTTTTC	78							
CXCL10	CCCACATGTTGAGATCATTGC	GCTTCTCTCTGTGTTCGAGGA	141							
С3	ATCAAATCAGGCTCCGATGA	GGGCTTCTCTGCATTTGATG	76							
CD14	GGGTTCCTGCTCAGATTCTG	CCCACGACACATTACGGAGT	164							
CLDN3	ATCGGCAGCAGCATTATCAC	ACACTTTGCACTGCATCTGG	94							
CTLA4	CTCCTGTACCCACCACCTA	AGAATCTGGGCATGGTTCTG	84							
DEFB1	TTCCTCCTCATGGTCCTGTT	CATCTTTGGAGCACACTTGC	114							
OCLN	GACGAGCTGGAGGAAGACTG	GTACTCCTGCAGGCCACTGT	102							
PLA2G4A	CGTACCCCTTGATCCTGAGA	CTTGGCCTTGCAGAAAAGTC	73							
PTGES	TGTACGTAGTGGCCATCATCA	CTCCGTGTCTCTGAGCATCC	84							
PTGS2	GAACTTACAGGAGAGAAGGAAATGG	TTTCTACCAGAAGGGCAGGA	94							
SAA	GCTAAAGTGATCAGCGATGC	AGTGGTTGGGGTCCTTGC	145							
	Housekeeping genes									
GAPDH	ACCCAGAAGACTGTGGATGG	AAGCAGGGATGATGTTCTGG	79							
RLP13A	ATTGTGGCCAAGCAGGTACT	AATTGCCAGAAATGTTGATGC	76							
PPIA	CAAGACTGAGTGGTTGGATGG	TGTCCACAGTCAGCAATGGT	138							

Supplementary Table 2.

Alpha diversity indices (Faiths PD) for BBE (left) and LB (right) groups for each segment. Pairwise Kruskal-Wallis. Dark grey: p > 0.1; Light grey: p 0.05 to 0.099; White: p< 0.05

	BBE			LB					
		Faiths				Faiths PD			
					Crtl vs Od	0.916			
	Crti vs Od	0.834			Crtl vs LB	0.208			
	Crtl vs BBE	0.753		JEJU	Crtl vs LB+Od	0.487			
EJUNUM	Crtl vs BBE+Od	0.728		NUM	Od vs LB	0.059			
	Od vs BBE	0.834			Od vs LB+Od	0.298			
	Od vs BBE+Od	0.165			LB vs LB+Od	0.643			
	BBE vs BBE+Od	0.083			Crtl vs Od	0.568			
	Crtl vs Od	0.668			Crtl vs LB	0.654			
	Crtl vs BBE	0.105		IE	Crtl vs LB+Od	0.563			
ILEU	Crtl vs BBE+Od	0.728		ŬM	Od vs LB	0.568			
M	Od vs BBE	0.197			Od vs LB+Od	0.606			
	Od vs BBE+Od	0.519			LB vs LB+Od	0.728			
	BBE vs BBE+Od	0.036			Crtl vs Od	0.606			
	Crtl vs Od	0.439			Crtl vs LB	0.199			
	Crtl vs BBE	0.156		CAE	Crtl vs LB+Od	0.156			
CAE	Crtl vs BBE+Od	0.317		CUM	Od vs LB	0.418			
CUM	Od vs BBE	0.529			Od vs LB+Od	0.401			
	Od vs BBE+Od	0.817			LB vs LB+Od	0.817			
	BBE vs BBE+Od	0.355			Crtl vs Od	0.728			
	Crtl vs Od	0.908			Crtl vs LB	0.172			
	Crtl vs BBE	0.345		P	Crtl vs LB+Od	0.916			
뫄	Crtl vs BBE+Od	0.355		õx	Od vs LB	0.418			
ÔX	Od vs BBE	0.563			Od vs LB+Od	0.728			
	Od vs BBE+Od	0.406			LB vs LB+Od	0.401			
	BBE vs BBE+Od	0.908			Crtl vs Od	0.046			
	Crtl vs Od	0.046	1		Crtl vs LB	0.005			
	Crtl vs BBE	0.009	1	DIS	Crtl vs LB+Od	0.093			
DIS	Crtl vs BBE+Od	0.023	1	TAL	Od vs LB	0.366			
TAL	Od vs BBE	0.208			Od vs LB+Od	0.834			
	Od vs BBE+Od	0.752			LB vs LB+Od	0.699			
	BBE vs BBE+Od	0.115			•				

Supplementary Table 3.

Beta diversity (unweighted UniFrac) for BBE groups for each segment. Permanova (pairwise Kruskal-Wallis) for DMs in Figure 3. Dark grey: p > 0.1; Light grey: p 0.05 to 0.099; White: p < 0.05

BBE									
		Unweighted							
		p-value	q-value						
Σ	Crtl vs BBE	0.290	0.290						
NN	Crtl vs BBE+Od	0.080	0.134						
JEJ	BBE vs BBE+Od	0.089	0.134						
١	Crtl vs BBE	0.026	0.039						
ILEUN	Crtl vs BBE+Od	0.163	0.163						
	BBE vs BBE+Od	0.026	0.039						
CAECUM	Crtl vs BBE	0.032	0.096						
	Crtl vs BBE+Od	0.103	0.155						
	BBE vs BBE+Od	0.208	0.208						
IAL	Crtl vs BBE	0.003	0.006						
NIXC	Crtl vs BBE+Od	0.026	0.026						
PRC	BBE vs BBE+Od	0.004	0.006						
	Crtl vs BBE	0.005	0.008						
ISTA	Crtl vs BBE+Od	0.014	0.014						
DI	BBE vs BBE+Od	0.005	0.008						

Supplementary Table 4.

Beta diversity (unweighted UniFrac) for LB groups for each segment. Permanova (pairwise Kruskal-Wallis) for DMs in Figure 3. Dark grey: p > 0.1; Light grey: p 0.05 to 0.099; White: p< 0.05

LB								
		Unweighted						
		p-value	q-value					
Σ	Crtl vs LB	0.067	0.099					
NN	Crtl vs LB+Od	0.022	0.066					
ЭĽ	LB vs LB+Od	0.099	0.099					
١	Crtl vs LB	0.356	0.356					
ILEUN	Crtl vs LB+Od	0.073	0.110					
	LB vs LB+Od	0.030	0.090					
CAECUM	Crtl vs LB	0.049	0.074					
	Crtl vs LB+Od	0.030	0.074					
	LB vs LB+Od	0.276	0.276					
1AL	Crtl vs LB	0.006	0.018					
NIXC	Crtl vs LB+Od	0.095	0.095					
PRC	LB vs LB+Od	0.030	0.045					
Ļ	Crtl vs LB	0.008	0.014					
ISTA	Crtl vs LB+Od	0.009	0.014					
Ō	LB vs LB+Od	0.018	0.018					

Supplementary Table 5. Relative expression and significance (*p*-value) of genes significantly influenced by diet, infection or interaction of both treatments. Significance determined as $p \le 0.05$. # indicates a trend of effect where $p \le 0.1$.

Statistical analysis was conducted separately for each probiotic treatment, using a GLM analysis comparing the effect of probiotic supplementation and infection (and their interaction) to the control-diet groups (no probiotics).

Immune	Immune	Relative expression				Significance (<i>p</i> -value)					Significance (<i>p</i> -value)		
function	gene	Control	O. dentatum	BBE	O. dentatum + BBE	Diet	Infection	Interaction	LB	O. dentatum LB	Diet	Infection	Interaction
	IL1A	5.3	4.7	7.4	6.5	0.048			5.9	5.6			
	IL1B	2.2	3.2	3.3	4.4	# 0.059	# 0.078		3.0	2.3			0.027
	IL8	7.7	5.5	11.0	8.7	0.007	# 0.054		9.4	7.9	# 0.098	# 0.082	
	IL12B	3.1	3.2	5.8	5.5	0.026			4.4	6.0	0.016		
	IFNG	3.9	3.1	5.4	4.0				6.4	5.2	0.002		
Th1	TNF	8.9	29.6	19.1	18.6			0.014	26.9	31.2	# 0.091	0.026	
	TLR2	4.1	7.8	7.5	6.3			0.023	5.8	7.1		# 0.054	
	TLR3	1.8	3.0	2.3	2.0			0.047	2.2	2.6		0.005	# 0.054
	INOS	13.7	9.7	22.9	17.9	# 0.076			19.1	21.4	0.034		
	CCL3	2.5	3.8	3.7	3.1			# 0.07	5.6	4.4	0.012		# 0.096
	CXCL9	3.9	5.5	7.0	3.8			# 0.07	7.1	6.2			
	IL4	44.5	93.3	40.5	88.7		0.003		51.2	105.9		0.013	
	IL13	5.5	35.4	9.6	19.0		0.005		5.5	38.9		0.001	-
Th2	ARG1	11.4	61.9	9.7	76.4		0.007		15.2	23.0			0.026
	CCL17	17.5	93.1	14.6	86.4		0.003		9.3	88.8		0.001	
	CCL26	2.2	9.3	3.1	3.9			0.033	2.7	6.6		0.001	
Treg	TGFB1	3.1	5.7	4.8	5.5		# 0.079		4.5	6.5		0.011	
	IL4R	5.7	17.1	9.4	6.7			0.001	8.7	10.8		0.032	
Epithelial	DCLK1	12.1	49.3	23.2	16.7			0.009	25.1	31.1		0.019	
cell	TSLP	235.8	600.0	367.2	472.5		# 0.074		433.2	483.6		0.042	
and	FFAR2	38.9	215.7	58.2	79.1			0.037	52.2	140.7		0.017	
mucosal immune	HDAC2	3.5	3.6	3.1	2.5	# 0.062			3.0	2.8	# 0.066		
runction	HDAC6	6.5	10.2	9.3	5.4			0.013	7.9	7.3			
	HDAC9	2.6	6.1	4.3	3.7			0.019	4.5	6.5		0.012	

	RETNLB	9.4	51.9	6.8	11.3	0.031	0.014		7.5	24.8		0.004	
	IL6	4.6	15.9	5.1	8.9		0.02		6.2	8.9		0.04	
	C3	2.6	3.7	2.5	3.1		0.01		2.6	2.9		# 0.064	
	CD14	33.7	73.1	57.2	47.3			0.094	43.3	66.1			
Innate immune defence	CTLA4	2.0	3.9	3.4	2.6			0.042	3.6	2.8			# 0.054
	CXCL10	3.8	4.0	6.7	5.3	0.04			6.4	4.7	# 0.059		
	PLA2G4A	4.2	5.1	5.7	3.7			0.036	4.8	4.5			
	PTGES	14.9	22.3	28.6	15.8			0.008	16.0	18.9			
	PTGS2	3.5	15.1	10.0	13.3		0.017		7.0	11.6		0.022	