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APPENDICES
A ADDITIONAL EXPERIMENTS AND DETAILS
In this section, we provide additional details as well as experiments to supplement those in Section 4.

Table S1. Percentage robust accuracies of ResNet-20 for CIFAR10 against `2 attack.

↓ Algorithm/Attack→ Model Training param Benign PGD-10 PGD-10
ε2 = 0.5 ε2 = 1

PGD-AT WideResNet28-4 ε2 = 1 83.25 66.69 46.11
MMA WideResNet28-4 d = 1 88.92 66.81 37.22

`2 ATENT ResNet20 γ = 0.05, ε = 0.001N (0,1) 85.44 65.12 47.38
ε2=0.435

TRADES (smooth) ResNet20 ε2 = 0.435, σ = 0.12 75.13 61.03
`2 ATENT ResNet20 γ = 0.05,

√
2η′ε = 0.12N (0,1) 72.10 64.53

A.1 Detailed training setup
Architectures: For MNIST- `∞ experiments, we consider a CNN architecture with the following

configuration (same as Zhang et al. (2019b)). Feature extraction consists of the following sequence
of operations: two layers of 2-D convolutions with 32 channels, kernal size 3, ReLU activation each,
followed by maxpooling by factor 2, followed by two layers of 2-D convolutions with 64 channels, kernel
size 3, ReLU activation, and finally another maxpool (by 2) operation. This is followed by the classification
module, consisting of a fully connected layer of size 1024 × 200, ReLU activation, dropout, another fully
connected layer of size 200 × 200, ReLU activation and a final fully connected layer of size 200 × 10.
Effectively this network has 4 convolutional and 3 fully connected layers. We use batch size of 128 with
this configuration.

For MNIST-`2 experiments, we consider the LeNet5 model from the Advertorch library (same as Ding
et al. (2019)). This consists of a feature extractor of the form - two layers of 2-D convolutions, first one
with 32 and second one with 64 channels, ReLU activation and maxpool by factor 2. The classifier consists
of one fully connected layer of dimension 3136× 1024 followed by ReLU activation, and finally another
fully connected layer of size 1024× 10. We use batch size of 50 with this configuration.

For CIFAR-`∞ experiments we consider a WideResNet with 34 layers and widening factor 10 (same as
Zhang et al. (2019b) and Madry et al. (2018)). It consists of a 2-D convolutional operation, followed by 3
building blocks of WideResNet, ReLU, 2D average pooling and fully connected layer. Each building block
of the WideResNet consists of 5 successive operations of batch normalization, ReLU, 2D convolution,
another batch normalization, ReLU, dropout, a 2-D convolution and shortcut connection. We use batch size
of 128 with this configuration.

For CIFAR-`2 experiments, we consider a ResNet with 20 layers. This ResNet consists of a 2-D
convolution, followed by three blocks, each consisting of 3 basic blocks with 2 convolutional layers, batch
normalization and ReLU. This is finally followed by average pooling and a fully connected layer. We use
batch size of 256 with this configuration.

Training SGD and Entropy SGD models for MNIST experiments: For SGD, we trained the 7-layer
convolutional network setup in Zhang et al. (2019b); Carlini and Wagner (2017) with the MNIST dataset,
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setting batch size of 128, for `∞ SGD optimizer using a learning rate of 0.1, for 50 epochs. For Entropy
SGD, with 5 langevin steps, and γ = 10−3, batch size of 128 and learning rate of 0.1 and 50 total epochs.

A.2 `2 ATENT
`2-PGD attacks on CIFAR10: We explore the effectiveness of `2-ATENT as a defense against `2

perturbations. These results are tabulated in Table S1. We test 10-step PGD adversarial attacks at ε2 = 0.5
and ε2 = 1. For the purpose of this comparison, we compare pretrained models of MMA and PGD-AT at
ε2 = 1. To train ATENT, we use γ = 0.08 for ε2 = 1, 10 step attack (with 2.5ε2/10 step size), K = 10
langevin iterations, langevin step η′ = 2ε2/K, learning rate for weights η = 0.1. ATENT achieves better
robust accuracy against all baselines in Table S1. Specifically, the first three rows compare PGD, MMA
and `2-ATENT against PGD attack of radii ε2 = 0.5, 1. All three models trained assume an attack budget
of ε2 = 1. With this setting, all three models have similar performance for a weaker attack of ε2 = 0.5,
whereas in the case of the stronger attack ε2 = 1, ATENT performs best. ATENT performs better even
though we train a ResNet20 which has less expressive power as compared to WideResNet28. This shows
that even with a smaller network, ATENT can produce a model that is more robust as compared to PGD-AT
and MMA at high attack radii.

We also compare models primarily trained to boost the certificate of randomized smoothing. If the
robust test accuracy is 1y=f(x;w) where 1 is an indicator vector with value 1 if y = f(x;w) and 0 if
y 6= f(x;w), then the randomized smoothing certified robust accuracy is computed using a function
g(x) = arg maxy∈C P(f(x + δ;w) − y), C = {1, 2, . . .m} possible labels, with δ ∈ N (0, σ2). In this
case certified robust accuracy is 1y=g(x;w). TRADES (smoothing) (Blum et al. (2020)) algorithm aims to
maximize this certified robust accuracy.

Even though ATENT algorithm by design does not maximize the certified robust accuracy, we test
the generalization capablity of ATENT by comparing against smoothing version of TRADES (Blum
et al. (2020)). For this we train a ResNet20 model for both TRADES smoothing version at default
parameter setting and `2 ATENT, at η′ = 0.5ε2/K, γ = 0.05, σ(ε) = 0.577 such that the effective noise
standard deviation is 0.12. These models are tested against PGD-10 attacks at radius ε2 = 0.435. In all `2
ATENT experiments, we choose the value of γ = 0.05 such that the perturbation ‖X ′K −X‖F ≈ ε2 of
corresponding models of TRADES and PGD-AT. For all ATENT experiments, we set α = 0.9. We see that
ATENT does better in terms of standard robust accuracy.

Experiments on randomized smoothing: Since the formulation of ATENT is similar to a noisy PGD
adversarial training algorithm, we test its efficiency towards randomized smoothing and producing a higher
robustness certificate (Table S2). For this we train a ResNet-20 on CIFAR10, at γ = 0.05, η′ = 0.02, η =
0.1, K = 10, and tune the noise ε, such that effective noise

√
2η′ε has standard deviation σ = 0.12. We

compare the results of randomized smoothing to established benchmarks on ResNet-110 (results have been
borrowed from Table 1 of Blum et al. (2020)) as well as a smaller ResNet-20 model trained using TRADES
at its default settings. We observe that without any modification to the current form of ATENT, our method
is capable of producing a competitive certificate to state of art methods. Since ATENT does not solve the
randomized smoothing objective, we cannot expect to see optimal certified robust accuracies; however we
still see competitive performance. In future work we aim to design modifications to ATENT which can
serve the objective of certification.
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Table S2. Smoothed certified robust accuracies for CIFAR10 against `∞ attack of ε = 2/255 (`2, ε = 0.435), smoothing factor σ = 0.12.

Smoothing radius→ ResNet Standard ε∞
↓ Defense Type 0 2/255

Crown IBP (Zhang et al. (2019a)) 110 72.0 54.0
Smoothing (Wong et al. (2018)) 110 68.3 53.9

SmoothAdv (Salman et al. (2019)) 110 82.1 60.8
TRADES Smoothing (Blum et al. (2020)) 110 78.7 62.6

TRADES Smoothing 20 78.2 58.1
ATENT (ours) 20 72.2 55.41

A.3 `∞ ATENT
Training characteristics of `∞ ATENT: In Figure S1 we display the training curves of ATENT. As

shown, the robust accuracies spike sharply after the first learning rate decay, followed by an immediate
decrease in robust accuracies. This behavior is similar to that observed in Rice et al. (2020). This is also the
key intuition used in the design of the learning rate scheduler for TRADES.

Figure S1: Benign training, test and robust training. test accuracies of ATENT. The learning rate is decayed
at epoch 76, where the robust test accuracy peaks. This is the accuracy reported.

Table S3. Percentage robust accuracies for CIFAR10 against `∞ PGD and ATENT attacks of different radii.

Attack radius→ 2/255 4/255 8/255 12/255
↓ Attack
PGD-20 79.83 73.35 57.23 39.37

ATENT-20 79.95 73.76 59.69 47.53

ATENT as Attack: For our `∞-ATENT WideResNet-34-10, we also test `∞-ATENT as an attack. We
keep the same configuration as that of PGD-20, for ATENT. We compare the performance of our `∞-
ATENT trained model (specifically designed to work against ε∞=8/255 attacks). The values (Table S3)
suggest that the adversarial perturbations generated by ATENT are similar in strength to those produced by
PGD (worst possible attack).
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Table S4. Average running time per epoch in seconds for ATENT against baselines for CIFAR10.

Algorithm Total epochs `2 `∞
ATENT(K=10) 76 282.04 ± 1.65 1128.21 ± 5.29
ATENT(K=5) - 142.47 ± 1.18 572.85 ± 4.93

TRADES 100 2606.43 ± 2.64 1577.29 ± 1.45
PGD 150 241.79 ± 0.79 615.48 ± 4.09

Computational complexity: In terms of computational complexity, ATENT matches that of PGD and
TRADES, as can be observed from the fact that all three approaches are nested iterative optimizations. In
Table S4 we tabulate the running time performance of PGD (without random restarts), TRADES and attent,
per epoch. We use default experiment settings for PGD and TRADES to make these comparisons. Note
that because we rely on an early stopping criterion, there is no fair way of comparing overall running time
of all baselines. ATENT requires only 76 epochs overall, whereas TRADES is run for 100 epochs and PGD
is run for 150 epochs. The running time per epoch of ATENT is in between TRADES and PGD, making
it competent even in terms of time-complexity. We also probe the running time dependence on choice of
number of Langevin iterations K. We see that there is a linear dependence on K of the running time.

Due to the high computational complexity of all adversarial algorithms, we test a fine-tuning approach,
to trade computational complexity for accuracy. This method is suggested in Jeddi et al. (2020). In this
context, we take a pre-trained WideResNet-34-10 which has been trained on benign CIFAR10 samples
only. This model is then fine tuned on adversarial training data, via `∞ ATENT using a low learning rate
η = 0.0001 and trained for only 20 epochs. The final robust accuracy at ε∞ = 8/255 is 52.1%. This is
accuracy marginally improves upon the robust accuracy observed (51.7%) for fine-tuned WideResNet-28-
10 PGD-AT trained model in Jeddi et al. (2020). This experiments suggests that ATENT is amenable for
fine tuning pretrained benign models using lesser computation, but at the cost of slightly reduced robust
accuracy (roughly 5% drop at benchmark of ε∞ = 8/255).

B PROOFS AND DERIVATIONS
B.1 Theoretical properties of the augmented loss

We now state an informal theorem on the conditions required for convergence of SGLD in Eq. 7 for
estimating adversarial samples X ′. We restate Lemma 3.1 as follows:

LEMMA B.1. The effective loss F (X ′;X, Y,w) := γ
2‖X − X ′‖2F − L(X ′;Y,w) which guides the

Langevin sampling process in Eq. 7 is

1. β + γ smooth if L(X;Y,w) is β-smooth in X .

2.
(
γ
4 ,

L2

γ + γ
2‖X‖

2
F

)
dissipative if L(X;Y,w) is L-Lipschitz in X .

One can then use smoothness and dissipativity of F (X ′;Y,w) to show convergence of SGLD for the
optimization over X ′ (Eq. 7) via Theorem 3.3 of Xu et al. (2017).

We first derive smoothness conditions for the effective loss

F (X ′;X, Y,w) :=
γ

2
‖X −X ′‖2F − L(X ′;Y,w), ∀X ′1, X ′2.
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We use abbreviations p(X ′) := p(X ′;X, Y,w), F (X ′) := F (X ′;X, Y,w),L(X ′;Y, z) := L(X ′) and
L(X;Y, z) := L(X), and assume that X and X ′ are vectorized. Unless specified otherwise, ‖ · ‖ refers to
the vector 2-norm.

PROOF. Let us show that ‖∇X ′F (X ′2)−∇X ′F (X ′1)‖ ≤ β′‖X ′2 −X ′1‖. If the original loss function is
β smooth, i.e.,

‖∇X ′L(X ′2)−∇X ′L(X ′2)‖ ≤ β‖X ′2 −X ′1‖,

then:

‖∇X ′F (X ′2)−∇X ′F (X ′1)‖ ≤ ‖ −∇X ′L(X ′2) +∇X ′L(X ′1)− γ(X −X ′2) + γ(X −X ′1)‖
≤ ‖∇X ′L(X ′2)−∇X ′L(X ′1)‖+ ‖γ(X ′2 −X ′1)‖
≤ (β + γ)‖X ′2 −X ′1‖

by application of the triangle inequality.

Next, we establish conditions required to show (m, b)-dissipativity for F (X ′), i.e. 〈∇X ′F (X ′), X ′〉 ≥
m‖X ′‖22 − b for positive constants m, b > 0, ∀X ′. To show that:

〈∇X ′F (X ′), X ′〉 ≥ m‖X ′‖22 − b

where the left side of inequality can be expanded as:

〈∇X ′F (X ′), X ′〉 = 〈−∇X ′L(X ′) + γ(X ′ −X), X ′〉

= 〈−∇X ′L(X ′), X ′〉+ γ‖X ′‖22 − γ〈X,X ′〉

= 〈−∇X ′L(X ′), X ′〉+ γ‖X ′‖22 −
γ

2

(
‖X ′‖22 + ‖X‖22 − ‖X −X ′‖22

)
≥ 〈−∇X ′L(X ′), X ′〉+ γ‖X ′‖22 −

γ

2

(
‖X ′‖22 + ‖X‖22

)
= 〈−∇X ′L(X ′), X ′〉+

γ

2
‖X ′‖22 −

γ

2
‖X‖22 (S1)

To find the inner product 〈−∇X ′L(X ′), X ′〉, we expand squares:

‖∇X ′L(X ′)− γ

2
X ′‖2 = ‖∇X ′L(X ′)‖22 +

γ2

4
‖X ′‖22 − γ〈∇X ′L(X ′), X ′〉 ≥ 0

=⇒ −〈∇X ′L(X ′), X ′〉 ≥ −‖∇X
′L(X ′)‖22
γ

− γ

4
‖X ′‖22
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Plugging this into (S1), and assuming Lipschitz continuity of original loss L(X ′), i.e., ‖∇X ′L(X ′)‖2 ≤ L:

〈∇X ′F (X ′), X ′〉 ≥ 〈−∇X ′L(X ′), X ′〉+
γ

2
‖X ′‖22 −

γ

2
‖X‖22

≥ −‖∇X
′L(X ′)‖22
γ

− γ

4
‖X ′‖22 +

γ

2
‖X ′‖22 −

γ

2
‖X‖22

=
γ

4
‖X ′‖22 −

(
L2

γ
+
γ

2
‖X‖22

)
= m‖X ′‖22 − b

where m = γ
4 and b = L2

γ + γ
2‖X‖

2
2. Thus, F (X ′) is (γ4 ,

L2

γ + γ
2‖X‖

2
2) dissipative, if L(X ′) is L-Lipschitz.

With Lemma B.1 we can show convergence of the SGLD inner optimization loop. To minimize overall
loss function, the data entropy loss LDE is minimized w.r.t. w, via Stochastic Gradient Descent (SGD).
The gradient update for weights w are designed via Eq. 6 as follows:

∇wLDE(w;X, Y, γ) = ∇w
∫
X ′
L(X ′;Y,w)p(X ′;X, Y,w, γ)dX ′

= ∇wEX ′∼p(X ′;X,Y,w,γ)[L(X ′;Y,w)]

=

∫
X ′
∇w

(
L(X ′;Y,w)p(X ′;X, Y,w, γ)

)
dX ′

=

∫
X ′
∇wL(X ′;Y,w) · p(X ′;X, Y,w, γ)

+∇wL(X ′;Y,w) · L(X ′;Y,w) · p(X ′;X, Y,w, γ)dX ′

=

∫
X ′
∇wL(X ′;Y,w)

(
L(X ′;Y,w) + 1

)
p(X ′;X, Y,w, γ)dX ′

= EX ′∼p(X ′;X,Y,w,γ)

(
∇wL(X ′;Y,w) · (L(X ′;Y,w) + 1)

)
Then a loose upper bound on Lipschitz continuity of LDE is ‖∇wLDE(w;X, Y, γ)‖2 ≤ L̄(R + 1),
if original loss is L̄-Lipschitz in w and L(X) ≤ R. Due to the complicated form of this expression,
establishing β-smoothness will require extra rigor. We push a more thorough evaluation of the convergence
of the outer SGD loop to future work.

B.2 Entropy SGD
Chaudhari et al. (2019) claim that neural networks that favor wide local minima have better generalization

properties, in terms of perturbations to data, weights as well as activations. Mathematically, the formulation
in Entropy SGD can be summarized as follows. A basic way to model the distribution of the weights of the
neural network is using a Gibbs distribution of the form:

p(w;X, Y, β) = Z−1
X,β exp

(
−βL(w;X, Y )

)
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Algorithm 1 Entropy SGD

1: Input: X = [XB1 , XB2 . . . XBJ ], f, η, η′, w = w0, γ, α, ε
2: for t = 0, · · ·T − 1 do
3: for j = 1, · · · J do
4: w′0 ← wt, µ0 ← wt {Repeat inner loop for all training batches j}
5: for k = 0, · · · , K − 1 do
6: dw′k ← 1

nj

∑nj
i=1−∇w=wkL(f(w;xi)) + γ(wk − w′k) {∀xi ∈ XBj}

7: w′k+1 ← w′k + η′dw′k +
√

2η′εN (0, 1) {Langevin update}
8: µk ← (1− α)µk + αw′k+1

9: end for
10: µt ← µK

11: wt+1 ← wt − ηγ(wt − µt) {Repeat outer loop step for all training batches j}
12: end for
13: end for
14: Output ŵ ← wT

When β → ∞, this distribution concentrates at the global (if unique) minimizer of L(w∗;X, Y ). A
modified Gibbs distribution, with an additional smoothing parameter is introduced, which assumes the
form:

p(w′;w,X, Y, β = 1, γ) = Z−1
w,X,γ exp

(
−L(w′;X, Y )− γ

2
‖w′ − w‖22

)
(S2)

where Zw,X,γ normalizes the probability.

Here γ controls the width of the valley; if γ → ∞, the sampling is sharp, and this corresponds to no
smoothing effect, meanwhile γ → 0 corresponds to a uniform contribution from all points in the loss
manifold. The standard objective is:

min
w
L(w;X, Y ) := min

w
− log

(
exp

(
−L(w;X, Y )

))
= min

w
− log

(∫
w′

exp
(
−L(w′;X, Y )

)
δ(w − w′)dw′

)
which can be seen as a sharp sampling of the loss function. Now, if one defined the Local Entropy as:

Lent(w;X, Y ) = − log(Zw,X,Y,γ)

= − log

(∫
w′

exp

(
−L(w′;X, Y )− γ

2
‖w − w′‖22

)
dw′

)
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our new objective is to minimize this augmented objective function Lent(w;X, Y ), which resembles a
smoothed version of the loss function with a Gaussian kernel. The SGD update can be designed as follows:

∇wLent(w;X, Y ) = −∇w(log(Zw,X,Y,γ))

= Z−1
w,X,γ∇w(Zw,X,γ)

= Z−1
w,X,γ

(∫
w′
e

(
−L(w′;X,Y )−γ2 ‖w−w

′‖22
)
· γ(w − w′)dw′

)

=

∫
w′
p(w′;w,X, Y, γ) · γ(w − w′)dw′

= Ew′∼p(w′)

[
γ(w − w′)

]
Then, using this gradient, the SGD update for a given batch is designed as:

w+ = w − η∇wLent(w;X, Y )

This gradient ideally requires computation over the entire training set at once; however can be extended
to a batch-wise update rule by borrowing key findings from Welling and Teh (2011). This expectation
for the full gradient is computationally intractable, however, Euler discretization of Langevin Stochastic
Differential Equation, it can be approximated fairly well as

w′t+1 = w′t + ηt∇w′ log p(w′t) +
√

2ηN (0, I)

such that after large enough amount of iterations w+ → w∞ then w∞ ∼ p(w′). One can estimate
Ew′∼p(w′)

[
γ(w − w′)

]
by averaging over many such iterates from this process. This result is stated as

it is from (Chaudhari et al. (2019)): Ew′∼p(w′)[g(w′)] =
∑
t ηtg(w′

t)∑
t ηt

. This leads to the algorithm shown
in Algorithm 1. One can further accrue exponentially decaying weighted averaging of g(w′t) to estimate
Ew′∼p(w′)[g(w′)]. This entire procedure is described in Algorithm 1.

This algorithm is then further guaranteed to find wide minima neighborhoods of w by design, as sketched
out by the proofs in Chaudhari et al. (2019).

B.3 Stochastic Gradient Langevin Dynamics
Stochastic Gradient Langevin Dynamics combines techniques of Stochastic Gradient Descent and

Langevin Dynamics (Welling and Teh (2011)). Given a probability distribution π = p(θ;X), the following
update rule allows us to sample from the distribution π:

θt+1 = θt + η∇θp(θt;X) +
√

2η′ε (S3)

where η′ is step size and ε is normally distributed. Then, as t→∞, θ ∼ π.

While this update rule in itself suffices, if the parameters are conditioned on a a training sample set X ,
which is typically large, the gradient term in Eq. S3 is expensive to compute. (Welling and Teh (2011))
shows that the following batch-wise update rule:

θt+1 = θt + η∇θp(θt;XBj ) +
√

2η′ε
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Algorithm 2 PGD AT

1: Input: [XB1 , XB2 . . . XBJ ], f, η, η′, w = w0, ε
2: for t = 0, · · ·T − 1 do
3: for j = 1, · · · J do
4: x′0 ← x {∀x ∈ XBj}
5: for k = 0, · · · , K − 1 do
6: dx′k ← 1

n

∑n
i=1∇x=xkL(f(wt;x))

7: x′k+1 ← x′k + η′dx′k {Gradient ascent}
8: projectx+∆(x′, ε)
9: end for

10: µt ← L(wt, x′K) {batch loss for XBj}
11: dLt ← ∇wµt {gradient of batch loss}
12: wt+1 ← wt − ηdLt
13: end for
14: end for
15: Output ŵ ← wT

suffices to produce a good approximation to the samples θt→∞ ∼ π. In Algorithm 1 of main paper
(ATENT), θ is the set of perturbed points X ′. In each internal iteration, we look at subset of trainable
parameters X ′Bj . We update the estimate for X ′Bj by only considering data-points XBj at a time. In the
current formulation the set of iterable parameters X ′Bj only ’see’ a single batch of data XBj ; a better
estimate would require X ′Bj to be updated by iteratively over all possible batches XBk , k = 1, 2....J .
However in practice we observe that just using the corresponding batch XBk=j suffices. In future work, we
will explore the theoretical implications of this algorithmic design.

B.4 PGD-Adversarial Training
In Algorithm 2 we describe the PGD-AT algorithm. Madry et al. (2018) demonstrate that PGD

based-attack is the best possible attack that can be given for a given network and dataset combination.
Theoretically,

x̄worst = arg max
δ∈∆p

L(f(ŵ;x+ δ), y) (S4)

and if this maximization can be solved tractably, then a network trained with the following min-max
formulation is said to be robust:

min
w

max
δ∈∆p

L(f(ŵ;X + δ, Y ), Y ) (S5)

Furthermore they show that first order based gradient approaches, such as SGD, are sufficient to suitably
optimize the inner maximization over the perturbed dataset. This can be obtained using the following
gradient ascent update rule:

X ′ = X ′ + η′∇X ′∈X+δL(f(w,X ′ + δ;Y ), Y )

(see also Step 7 of Algorithm 2). Note that when ∆p = ∆2, this projection rule represents a noise-less
version of the update rule in ATENT.
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Iterative Fast Gradient Sign (IFGS) method effectively captures a similar projection based approach
which performs an update within an `∞ ball. This update is given by:

X ′ = X ′ + η′sign(∇X ′L(f(w,X ′ + δ;Y ), Y ))

Note that this update rule constructs an adversarial example within `∞-ball, during the training procedure.
Meanwhile, given our proposed adversarial example sampling criterion in Assumption 2, our update rule is
slightly different.

C CONCURRENT WORK
We highlight the more recent developments in adversarial machine learning literature which were
implemented concurrently with our work.

Adversarial attacks: Croce and Hein (2020) present a parameter-free approach to designing an
adversarial attack against various classes of defenses. Apart from `2 and `∞ attacks, various papers propose
other attack budgets, which use sparsity or `0 (Fan et al. (2020)). More recent papers discuss adversarial
robustness of a new breed of classifiers such as vision transformers in terms of `2, `∞ perturbations (Shao
et al. (2021); Paul and Chen (2021)) as well as sparsity based perturbations (Joshi et al. (2021)). Rony et al.
(2021) reformulate adversarial attacks as an augmented Lagrangian problem, and show high attack success
rates against defenses such as TRADES and adversarial training.

Adversarial defenses: Jiang et al. (2020) leverage contrastive learning for pretraining classifiers, and
observe that self-supervised pretraining improves robustness to adversarial attacks. Li et al. (2021) propose
to embed high dimnesional images into a low dimensional subspace and furhter regularize embeddings to
improve robustness.
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