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Appendix2

This appendix presents detailed derivations of some vectors involved in the mathematical model for the3
dynamics and kinematics of the CFSR. Some of these vectors are illustrated in Fig. 5.4

5
6 Angular momentum7

The angular momentum of a multi-body system is defined as follows:8
9

L =
n∑
i=0

ri ×miṙi. (71)

10
Taking ri = rξ + riξ and ṙi = ṙξ + ṙiξ + ωξB × riξ, Eq. (71) becomes:11

12
L =

∑n
i=0

((
rξ + riξ

)
×mi

(
ṙξ + ṙiξ + ωξB × riξ

))
=

∑n
i=0

(
mirξ × ṙξ +mirξ × ṙiξ −mirξB × riξ × ωξB +

+ miriξ × ṙξ +miriξ × ṙiξ −miriξ × riξ × ωξB
)

 . (72)

13
The terms

∑n
i=0mirξB × riξ × ωξB and

∑n
i=0miriξ × ṙξ on the right hand side of Eq. (72) disappear14

as
∑n

i=0miriξ = 0. This is proved as follows:15 ∑n
i=0miriξ =

∑n
i=0mi

(
ri − rξ

)
=

∑n
i=0miri −

∑n
i=0mirξ

=
∑n

i=0miri −Mtrξ
= 0

 . (73)
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Similarly, the term
∑n

i=0mirξB × ṙiξ on the right hand side of Eq. (72) disappears as
∑n

i=0miṙiξ = 0,16
which is proved as follows:17 ∑n

i=0miṙiξ =
∑n

i=0mi

(
ṙi − ṙξ

)
=

∑n
i=0miṙi −

∑n
i=0miṙξ

=
∑n

i=0miṙi −Mtṙξ
= 0

 . (74)

Taking into account Eqs. (73) and (74), the angular momentum describe in Eq. (71) becomes:18

L =
∑n

i=0

(
mirξ × ṙξ +miriξ × ṙiξ −miriξ × riξ × ωξB

)
= Mtrξ × ṙξ +

∑n
i=1miriξ × ṙiξ +

∑n
i=1 IiωξB

}
. (75)

Expressing the angular momentum defined by Eq. (75) in terms of inertia tensor and angular velocity19
gives:20

L =
r2ξ

r2ξ
rξ ×Mtṙξ +

∑n
1

r2iξ

r2iξ
riξ ×miṙiξ +

∑n
i=1 IiωξB

= r2ξMt

(
rξ × ṙξ

r2ξ

)
+
∑n

1 r
2
iξmi

(
riξ × ṙiξ

r2iξ

)
+
∑n

i=1 IiωξB

L = Iξωξ +
∑n

i=1 Iiωi +
∑n

i=1 IiωξB


. (76)

21
22

Expressing the last term on the right hand side of Eq. (76) in terms of inertia tensors with respect to the23 ∑
B , using the parallel axis theorem, gives:24

25

L = Iξωξ +
n∑
i=1

Iiωi +
n∑
i=1

(
Ii −mi[riB]×[riB]×ωξB

)
. (77)

Figure 5. Artistic illustration depicting the vectors involved in the derivation of the angular momentum
(Seddaoui, 2020)
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26
27

The CoM position vector and its derivative28

The position vector from the origin of
∑

B to the CoM ξ, in
∑

T , is defined as follows:29
30

rξB =
1

Mt

∑n
i=1miriB

=
1

Mt

∑n
i=1mi

(
RLi

bi +RLi−1
si−1

)
 . (78)

The derivative of rξB , described by Eq. (78), is:31

ṙξB =
1

Mt

n∑
i=1

mi

(
ṘLi

bi + ṘLi−1
si−1

)
. (79)

The derivative of the overall inertia tensor32

The derivative of the inertia tensor Iξ is defined as follows:33

İξ = Mt[ṙξB]×[rξB]× +Mt[rξB]×[ṙξB]× + İiB
İiB =

∑n
i=1mi[ṙiB]×[riB]× +

∑n
i=1mi[riB]×[ṙiB]×

}
. (80)
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