Supplementary Appendix SA1: Calculation of hydrate saturation

In this study, methane hydrate, water and gas fill the voids of glass-beads in a constant volume reactor, the hydrate saturation is defined as the volume ratio of the hydrate V_{h} and the pore volume V_{p} in a porous medium.

In the physical model, S_{h} can be calculated based on the volume conservation. The total volume of water and methane gas before hydrate formation is equal to that of water, gas and hydrate in the reactor after hydrate formation (Jin et al., 2018; Li et al., 2014; Li et al., 2012a; Zhao et al., 2015). Therefore, the volume conservation can be expressed as:

$$
\begin{equation*}
V_{p}=V_{w 0}+V_{g 0}=V_{w l}+V_{g l}+V_{h} \tag{1}
\end{equation*}
$$

where $V_{w 0}$ and $V_{g 0}$ are the volume of water and CH_{4} under initial conditions of pressure (P_{0}) and temperature (T_{0}), respectively; $V_{w l}, V_{g l}$ and V_{h} are the volumes of water, CH_{4} and methane hydrate under the finial conditions of pressure $\left(P_{l}\right)$ and temperature $\left(T_{1}\right)$, respectively.

In addition, it is assumed that hydrate is formed homogeneously in the BZ-01 glassbeads; water in the reactor is incompressible and expansion of the reactor is ignored; the molecular structure of methane hydrate is $\mathrm{CH}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; under the standard condition, $164 \mathrm{Sm}^{3}$ of CH_{4} gas and $0.8 \mathrm{~m}^{3}$ of water can be obtained from $1 \mathrm{~m}^{3}$ of hydrate dissociation.

Based on the real gas law, $V_{g 0}$ and $V_{g I}$ can be expressed as follows:

$$
\begin{gather*}
\mathrm{V}_{g 0}=\frac{0.1 Z_{0} T_{0} V_{g s 0}}{273.15 P_{0}} \tag{2}\\
\mathrm{~V}_{g 1}=\frac{0.1 Z_{1} T_{1}\left(V_{g s 0}-V_{g s}\right)}{273.15 P_{1}} \tag{3}
\end{gather*}
$$

Combining Equations (1) - (3), we obtain the total formula as follows:

$$
\begin{equation*}
V_{w 0}+\frac{0.1 Z_{0} T_{0} V_{g s 0}}{273.15 P_{0}}=\frac{V_{w 1} \rho_{w}-\frac{V_{g s} \rho_{h}}{164}+V_{g s} \rho_{g}}{\rho_{w}}+\frac{V_{g s}}{164}+\frac{0.1 Z_{1} T_{1}\left(V_{g s 0}-V_{g s}\right)}{273.15 P_{1}} \tag{4}
\end{equation*}
$$

where Z_{0} and Z_{l} are the gas compressibility factors according to different conditions of pressure and temperature, $V_{g s 0}$ is the standard volume of gas before hydrate formation, $V_{g s}$ is the volume of gas transferred into methane hydrate, ρ_{w}, ρ_{g} and ρ_{h} are the densities of water, methane gas and methane hydrate, respectively. $V_{w 0}, V_{g s 0}$, P_{0}, T_{0} and P_{l}, T_{l} could be measured in the experiment of hydrate formation, $V_{g s}$ can be solved by the Equation (4). Thus, hydrate saturation can be calculated as the following equation:

$$
\begin{equation*}
S_{h}(\%)=\frac{V_{h}}{V_{p}} \times 100=\frac{V_{g s}}{164 V_{p}} \times 100=\frac{V_{g s}}{164 V \varnothing} \times 100 \tag{5}
\end{equation*}
$$

where V is the volume of reactor cavity, \varnothing is porosity of glass-beads.

