Table S1. Pressures influencing changes in the state of surface-canopy forming kelp habitats are presented, following the Driver-Activity-Pressure-State-Impact-Response (DAPSIR) framework, commonly used to develop management responses to observed changes in marine ecosystems that address human needs (Oesterwind, Rau, and Zaiko 2016; Elliott et al. 2017; Bryhn et al. 2020). Drivers refer to the social and economic drivers of human needs, which are met through specific human activities that pressure ecosystem state change. This table groups pressures by primary activities known to affect kelp forest ecosystems. The pressures are the mechanisms of state change on the natural systems which then lead to impacts on human welfare and responses through specific management measures (sensu Elliott et al. 2017). We’ve categorized pressures into the spatial and temporal scales that they operate on. We consider changes in the state of kelp habitats as any change in the distribution, abundance and health of canopy-forming kelp, with specific focus on studies from the Northeast Pacific (bolded references). 

	Activity: Humans activities related to climate change (e.g. operating oil/gas installations, power stations, industrial/urban emissions)  

	Pressure 

	Operating Spatial Scale
	Operating Temporal Scale
	State change in kelp forests

	Reference studies

	Increases in frequency and intensity of marine heatwaves
	[bookmark: _1fob9te]regional to global
	weeks to months
	High ocean temperatures have been associated with declines in kelp forest distribution and abundance.


	Tegner & Dayton, 1991; Tegner et al., 1997; Edwards, 2004; Edwards & G. Hernández-Carmona 2005; Edwards and Estes 2006; Arafeh-Dalmau et al., 2019; Starko et al., 2019; Cavanaugh et al., 2019; Rogers-Bennett & Catton, 2019; Beas‐Luna et al., 2020; Sánchez‐Barredo et al., 2020; Berry et al., 2020; Schroeder et al. 2020
McPherson et al 2021; Smith et al 2021; 
Smale, 2020 (Global)

	Changes in upwelling patterns 
	local-regional
	weeks to months
	Strong upwelling brings cool nutrient rich water that promotes growth and reproduction, while lower nutrient availability, in particular nitrate (NO3-), coincides with reduced growth, reproduction, survival, and abundance of kelp.

Upwelling and other climate fluctuations also impact urchin recruitment, which can influence grazing pressure on kelp


	Wheeler et al., 1984; Zimmerman & Robertson, 1985; Hernández-Carmona et al., 2001; Valdez et al., 2003; Pfister et al., 2018; Hamilton et al., 2020; Berry et al., 2020;Okamato et al. 2020
Wernberg et al., 2019 (Global)


	
 Ocean 
acidification: changes in pH, pC02 and alkalinity 
	regional-global

	years to decades
	Variation among macroalgae species based on carbon utilization strategy, but non-calcifying seaweeds generally respond positively to increasing global CO2 concentrations 
	Kroeker et al., 2010; Harley et al., 2012 (Global); Olischläger et al., 2012 (Germany); Hepburn et al., 2011; Leal et al., 2017; Roleda et al., 2012 (New Zealand); Xu et al., 2019 (China)

	
	local

	years to decades
	Kelp forest can act as a refugia to acidification and deoxygenation by locally elevating pH and DO. Kelp forests can also mitigate ocean acidification by increasing seawater pH, oxygen and aragonite saturation state, and decreasing seawater inorganic carbon content and total alkalinity. 
	Frieder et al., 2012; Leary et al., 2017; Pfister et al., 2019 





	Salinity change from melting of glaciers, ice caps and ice sheets

	local-global
	years to decades
	Lower salinity inhibits kelp growth and survival

 
	Druehl, 1970;
Assis et al., 2018 (North Atlantic) 



	Change in storm severity and wave exposure 

	local-global
	years to decades
	Increases in the frequency and intensity of storms can lead to breakage and dislodgement of kelp.

	Dayton & Tegner, 1984; Ebeling et al. 1985; Reed et al., 2011; Krumhansl et al., 2016; Byrnes et al. 2011


	Activity: Construction of in-water structures, replacement of natural substratum, dredging

	Pressure 
	Operating Spatial Scale
	Operating Temporal Scale
	State change in kelp forests
	Reference studies

	Substratum loss or limitation 
	local
	days to years
	Physical removal or degradation of hard substrate decreases kelp abundance 
	Lawrence, 2014;
Gregr et al., 2019; Schroeder et al., 2020; Torres-Moye & Escofet 2014;

Fowler-Walker & Connell 2007 

	Changes in water motion & flow rates associated with physical change

	local-regional
	hours to days
	Kelp nutrient uptake, gas exchange, and reproduction dispersal can decrease without sufficient water motion. Extremely high currents and wave action cause kelp dislodgement and breakage. Changes in flow rate can induce change in kelp morphology
	Hurd et al., 1996; Denny & Cowen, 1997; Duggins et al., 2001; Koehl et al., 2008; Schroeder et al., 2020; Starko et al., 2019; Berry et al., 2020;
Hepburn et al., 2007 (New Zealand);
Hurd, 2017 (Global)

	Activity: Coastal development and land use change, including changes in watershed inputs to the ocean

	Pressure 

	Operating Spatial Scale
	Operating Temporal Scale
	State change in kelp forests
	Reference studies

	Changes in water column sediment concentration, e.g. sediment runoff, dredging 
	local-regional

	days to weeks
	Increased sediment particles in the water column can lead to lower sporophyte densities, plus physical scouring and reduced recruitment of kelp gametophytes
	Shaffer & Parks, 1994; Dayton et al., 1984



	
	
	
	Light limitation from water turbidity and sedimentation reduces kelp growth at gametophyte and young sporophyte phases, potentially inhibiting recruitment
	Vadas, 1972; Devinny & Volse, 1978; Torres-Moye & Escofet, 2014; Traiger & Konar, 2017; Sánchez‐Barredo et al., 2020;
Lyngby & Mortensen, 1996 (Denmark); Airoldi & Cinelli, 1997 (Italy)

	Eutrophication of coastal zone from nutrient runoff 
	local-regional
	days to weeks
	Increases in epiphyte growth and phytoplankton blooms can lead to decreased kelp health
	Russell et al., 2005 (Australia)


	Pollution and marine wastes 
	local-regional
	weeks to years
	Exposure to pollutants such as copper and petroleum decreases germling growth rates and gametophyte development
	Antrim et al., 1995; Leal et al., 2018 (New Zealand)


	Point source thermal change, e.g. outflow from power plants 
	local
	weeks to years
	Increased temperature can cause local dieback of kelp and increase the amount of kelp epiphytes
	Dixon et al., 1981; Schiel et al., 2004


	Activity: Human harvesting of marine mammals, fish, and invertebrates 

	Pressure 

	Operating Spatial Scale
	Operating Temporal Scale
	State change in kelp forests
	Reference studies

	Selective extraction of species 

	local-regional
	years to decades
	Targeted species loss of predators, such as sea otters, fishes, and invertebrates, cause shifts in grazer behavior or survival and density, increasing grazing rates, which can  cause regime shifts from productive kelp forests to urchin barrens.

	Estes & Palmisano, 1974; Breen et al., 1982; Watson & Estes, 2011; Beas-Luna & Ladah, 2014; Hamilton and Caselle, 2015; Burt et al., 2018; Rogers-Bennett & Catton, 2019; Smith et al 2021; McPherson et al 2021.

	Bottom trawling bycatch
	local-regional
	weeks to years
	Direct removal of kelp and indirect smothering from increased sediment  
	Žuljević et al., 2016
(Adriatic Sea);
Christie et al., 1998 (Norway)

	Activity: Human activities/climate change leading to movement of species beyond their natural ranges or collapse within their range

	Pressure 

	Operating Spatial Scale
	Operating Temporal Scale
	State change in kelp forests
	Reference studies

	Introduction of non-indigenous species and translocations 
	regional
	years to decades
	Competition for space from invasive macroalgae & shading by invasive epiphytes and epifauna (e.g. bryozoans) can cause declines in kelp abundance
	(Cogdell & Thornber, 2008, Undaria pinnatifida); Sullaway & Edwards, 2020, (Sargassum honeri); Dixon et al., 1981b, (Membranipora membranacea) Ambrose & Nelson, 1982, Sargassum muticum)

	Sea star wasting disease 
	local-regional
	years
	Removal of sea stars from kelp food webs can augment urchin grazing of kelps (i.e. Pycnopodia sea stars are urchin predators) 
	Harold & Pearse, 1987; Schultz et al., 2016; Burt et al., 2018; Rogers-Bennett & Catton, 2019

	Urchin diseases (local-regional)
	local-regional
	years
	Removal of sea urchins decreases grazing pressure on kelp, and increases kelp abundance and distribution 
	Pearse & Hines, 1979; 
Feehan & Scheibling, 2014 (Global)

	 Activity: Kelp harvesting, fishing and aquaculture 

	Pressure 

	Operating Spatial Scale
	Operating Temporal Scale
	State change in kelp forests
	Reference studies

	Removal of kelp biomass from natural populations 
	local
	weeks to years
	Harvest of Macrocystis canopy appears to have minimal effects on survival, biomass, and growth, although repeated removals may lead to reduced holdfast growth. 

Complete harvest of kelp can limit recolonization and reduces ecosystem services provided by kelp
	Coon & Roland, 1980; Krumhansl et al., 2017; Lorentsen et al., 2010 (Norway);
Messieh et al., 1991 (Eastern Canada)
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Figure S1. False color images (near-infrared displayed as red) of a kelp forest off the coast of British Colombia: (A) Landsat 30 m, (B) Sentinel 2 (10 m), (C) WordView-2 (2 m), (D) RGB UAS (0.035 m). 
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Figure S2. Examples of the impacts of coastal shadowing and adjacency effects. Multispectral (1.84 m) false-color infrared WorldView-2 imagery acquired at different sun elevations depicting some of the factors described in Table 1. (A) Overview of transect locations marked in white boxes. (B) Imagery acquired at a sun elevation of ~58o resulting in no shadow with (E) Transect 1 showing a normal kelp signal with high near infrared reflectance, and relative lower red and green reflectance. (C) Imagery acquired at a sun elevation of ~45o resulting in shadow with (F) Transect 2 showing the dampening of the kelp reflectance signal of pixels adjacent to the shore. (D) Imagery acquired at a sun elevation of ~58o resulting in the adjacency effect where (G) Transect 3 shows the increased reflectance signal from water as a result of contribution of high light scattering from land vegetation to the adjacent water pixels, resulting in possible misclassification of water as kelp. For (E-F) transect pixels are ordered from coastline to offshore
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