

Supplementary Material

Supplementary Figures and Tables

Supplementary Table 1. Cardiac function measured by echocardiography before and after KO induction by tamoxifen.

		- 1 w			10 w			52 w		2-v	vay RM An	iova
	с	ко	р ко vs с	с	ко	р ко vs с	с	ко	р ко vs с	\mathbf{P}_{Gen}	P _{Time}	P _{Gen x Time}
AoV VTI (mm)	41.88 ± 2.15	41.69 ± 2.00	0.965	35.99 ± 2.82	39.96 ± 4.32	0.359	31.43 ± 1.64	38.33 ± 2.96	0.177	0.326	0.026	0.326
LVOT (mm)	1.19 ± 0.02	1.18 ± 0.02	0.647	1.27 ± 0.02	1.27 ± 0.01	0.903	1.30 ± 0.03	1.30 ± 0.02	0.921	0.930	< 0.001	0.801
HR tO (BPM)	450.20 ± 9.00	460.50 ± 9.90		471.55 ± 9.32	480.31 ± 15.36		463.89 ± 16.35	456.77 ± 11.71		0.656	0.194	0.848
HR tend (BPM)	413.55 ± 15.34	412.38 ± 11.20	0.955	465.45 ± 13.36	460.88 ± 19.50	0.826	418.89 ± 15.73	372.77 ± 8.82	0.052	0.250	< 0.001	0.194
IVCT (ms)	18.81 ± 2.05	20.57 ± 2.08		15.07 ± 1.46	15.94 ± 1.33		17.61 ± 0.97	20.22 ± 1.82		0.333	0.146	0.928
IVRT (ms)	17.29 ± 0.69	16.73 ± 1.28	0.960	15.12 ± 0.87	16.31 ± 0.99	0.578	18.37 ± 1.22	22.89 ± 1.15	0.009	0.078	0.004	0.113
MV A (mm/s)	419.50 ± 34.47	382.40 ± 26.52	0.398	355.18 ± 28.98	345.61 ± 29.81	0.827	328.00 ± 48.78	303.80 ± 24.04	0.347	0.316	0.031	0.793
MV E (mm/s)	604.92 ± 47.58	586.82 ± 35.44	0.734	521.10 ± 24.59	522.93 ± 36.70	0.937	483.53 ± 39.96	468.82 ± 38.34	0.694	0.737	0.003	0.917
MV E/A	1.48 ± 0.08	1.58 ± 0.08		1.39 ± 0.09	1.60 ± 0.09		1.65 ± 0.17	1.58 ± 0.10		0.229	0.649	0.621
LVPA;d (mm)	0.69 ± 0.04	0.67 ± 0.03	0.573	0.77 ± 0.03	0.74 ± 0.02	0.414	0.81 ± 0.04	0.79 ± 0.02	0.353	0.296	< 0.001	0.914
LVPA;s (mm)	1.04 ± 0.05	1.01 ± 0.05	0.652	1.22 ± 0.05	1.16 ± 0.05	0.335	1.18 ± 0.07	1.18 ± 0.03	0.768	0.462	< 0.001	0.841
LVID;d (mm)	4.02 ± 0.09	4.05 ± 0.08		3.94 ± 0.07	3.91 ± 0.08		4.12 ± 0.15	4.10 ± 0.08		0.962	0.331	0.919
LVID;s (mm)	2.92 ± 0.10	2.98 ± 0.10	0.656	2.53 ± 0.10	2.63 ± 0.08	0.455	2.95 ± 0.11	2.90 ± 0.08	0.850	0.651	< 0.001	0.770
LVPW;d (mm)	0.72 ± 0.02	0.68 ± 0.03		0.84 ± 0.03	0.87 ± 0.03		0.94 ± 0.06	0.92 ± 0.02		0.700	< 0.001	0.407
LVPW;s (mm)	1.14 ± 0.05	1.00 ± 0.03	0.013	1.24 ± 0.04	1.27 ± 0.04	0.626	1.31 ± 0.05	1.31 ± 0.03	0.948	0.313	< 0.001	0.054
EF (%)	53.90 ± 1.87	52.22 ± 2.37	0.570	65.96 ± 2.08	61.53 ± 1.94	0.137	54.61 ± 2.38	56.65 ± 1.65	0.633	0.511	< 0.001	0.267
FS (%)	27.58 ± 1.19	26.70 ± 1.51	0.663	36.09 ± 1.65	32.80 ± 1.36	0.105	28.15 ± 1.57	29.44 ± 1.13	0.688	0.481	< 0.001	0.248
LV Mass (mg)	99.57 ± 2.60	95.41 ± 4.03	0.477	115.60 ± 3.53	113.76 ± 3.37	0.753	137.86 ± 7.01	134.11 ± 4.56	0.427	0.352	< 0.001	0.902
LV Mass corr (mg)	79.66 ± 2.08	76.32 ± 3.23	0.639	92.48 ± 2.83	91.01 ± 2.70	0.371	110.29 ± 5.61	107.29 ± 3.65	0.404	0.284	< 0.001	0.973
LV/BW (mg/g)	3.28 ± 0.08	3.16 ± 0.10	0.671	2.98 ± 0.10	3.00 ± 0.11	0.435	2.55 ± 0.17	2.53 ± 0.12	0.961	0.644	< 0.001	0.788
LV Vol;d (µL)	71.22 ± 3.57	72.52 ± 3.15		68.02 ± 2.92	66.78 ± 3.09		75.84 ± 5.66	74.66 ± 3.23		0.952	0.282	0.921
LV Vol;s (µL)	33.26 ± 2.76	35.36 ± 2.88	0.550	23.56 ± 2.15	25.96 ± 1.95	0.495	34.17 ± 3.04	32.56 ± 2.08	0.764	0.662	< 0.001	0.715
AoV SV (µL)	46.46 ± 1.93	45.94 ± 2.26		45.18 ± 3.01	50.82 ± 5.49		40.35 ± 3.43	50.87 ± 3.43		0.189	0.746	0.294
AoV CO (mL/min)	19.08 ± 0.85	18.83 ± 1.05		21.13 ± 1.76	24.00 ± 3.70		16.87 ± 1.46	18.95 ± 1.31		0.518	0.078	0.709

Data are presented as Mean±SEM (N=11 Control, 16 KO) and analysed by 2-way Repeated Measure Anova followed by Holm-Sidac test. A value of P or p<0.05 (for interaction P<0.1) was considered statistically significant (in bold). Highlighted in grey, data with significant effect of time.

ingingined in grey, data with significant crieet of time

The detailed description of abbreviations, measurements and calculations:

AoV Flow, ascending aorta view

AoV VTI, Aorta velocity time integral, PW Doppler LVOT, Left ventricular outflow tract lenght, B-mode HR, hear trate, ECG MV Flow, 4-chambers view, mitral valve IVCT, Isovolumic contraction time, PW Doppler IVRT, Isovolumic relaxation time, PW Doppler MV A, Mitral valve A (atrial) velocity, PW Doppler MV E, Mitral valve E (early) velocity, PW Doppler Calculation MV E/A, Mitral valve E/A ratio, MV E / MV A

SAX M-Mode, small axe view

LVAW;d, Inter-ventricular anterior wall (diastole), M-Mode LVAW;s, Inter-ventricular anterior wall (systole), M-Mode LVID;d, Left ventricular internal diameter (diastole), M-Mode LVID;s, Left ventricular internal diameter (systole), M-Mode LVDW;d, Left ventricular posterior wall (diastole), M-Mode

LVPW;s, Left ventricular posterior wall (systole), M-Mode Calculation

EF, LV ejection fraction, 100*((LV Vol;d-LV Vol;s)/LV Vol;d)

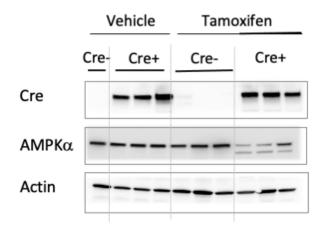
FS, LV fractional shortening, 100*((LVID;d-LVID;s)/LVID;d) LV Mass (mg), LV mass uncorrected, 1.053*((LVID;d+LVPW;d+IVS;d)³ - LVID;d³)

LV Mass corr (mg), LV mass corrected, LV mass * 0.8

LV/BW (mg/g), LV mass corrected for body weight, LV mass corrected/BW

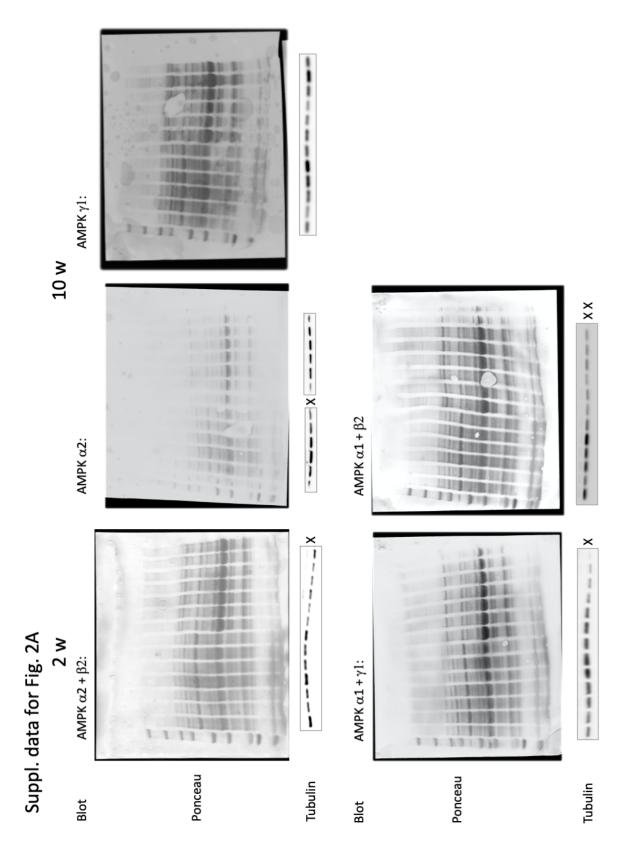
LV Vol:d. Left Ventricle volume diastole. ((7.0/(2.4+LVID:d))*LVID:d³

LV Vol;s, Left Ventricle volume systole, ((7.0/(2.4+LVID;s))*LVID;s³

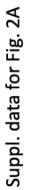

Ao SV, Stroke volume, $(\pi/4)^*$ LVOT²*AoV VTI

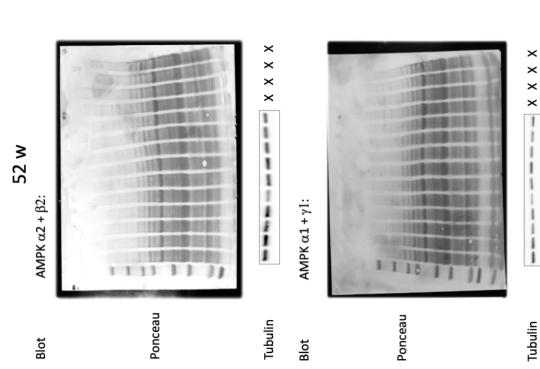
Ao CO, Cardiac output, (AoV SV*HR)/1000

Supplementary Table 2. Weight of liver, kidneys and spleen 52 weeks after KO induction by tamoxifen.

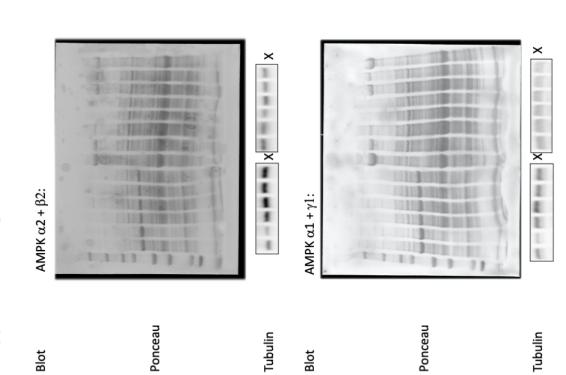

	С	КО	P _{KO vs C}
Body weight (g)	43.16 ± 2.86	43.48 ± 1.81	0.920
Liver (g)	1.819 ± 0.137	1.921 ± 0.097	0.541
Kidneys (g)	0.433 ± 0.015	0.461 ± 0.014	0.204
Spleen (g)	0.079 ± 0.003	0.084 ± 0.006	0.466

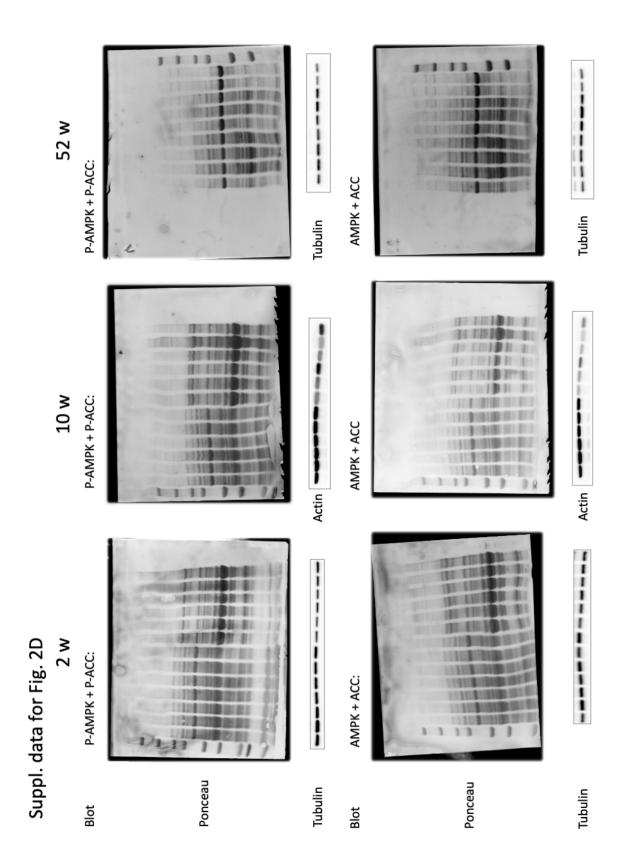
Data are presented as mean \pm SEM (n=8 Control, 10 KO) and analysed by Student's t-test. A value of P<0.05 was considered statistically significant.




Supplementary Figure 1. Tamoxifen-inducible and Cre-mediated deletion of AMPK α (α 1+ α 2) analyzed by Western blot in AMPK α 1(fl/fl)AMPK α 2(fl/fl) (Cre-) and AMPK α 1(fl/fl)AMPK α 2(fl/fl) (α MHC)-MerCreMer (Cre+) mice 2 weeks after tamoxifen or vehicle administration.

Supplementary Figure 2. Loading controls (Ponceau stainings and tubulin immunoblots) for Figures 2A, 2B and 2D.




4

Suppl. data for Fig. 2B

