Supplementary Material A

A.1 Development of the biodegradation assays for azo dyes and whitener

First, the influence of centrifugation on sedimentation of dyes was tested by determining the absorption or emission intensity of the dyes before and after centrifugation (12,000×g, 5 min). For whitener, excitation at 315 nm showed a maximum wavelength emission at 440 nm, as for 4,4'-diamino-2,2'-stilbenedisulfonic acid (DSDS), and the coefficient between the fluorescence intensity after and before centrifugation (I_{cent}/I) was 98%. For black dye an absorption decrease of 4% at both peak maxima was recorded, for red, blue and direct blue 15 dye (DB15) no decrease in absorption was detected and yellow dye showed a decrease of 50%. Calibration curves for all tests in liquid media were generated for molar concentrations at λ_{max} and the volume of liquid in microplates was kept constant to ensure accurate absorbance measurements. To quantitatively determine the amount of unhydrolyzed dye by measuring the absorption of supernatants, the tests with NB in microplates had to be completed in a maximum of three days. To determine the activities of the most active bacteria, initially, relative standard error between the triplicates was maximum 3%. During incubation the microtiter plates were covered with sterile lids and were packed in bags to prevent evaporation. Wet paper was inserted into the bags to maintain a constant humidity.

References

Hočevar, B., Grilc, M., and Likozar, B. (2019). Aqueous Dehydration, Hydrogenation, and Hydrodeoxygenation Reactions of Bio-Based Mucic Acid over Ni, NiMo, Pt, Rh, and Ru on Neutral or Acidic Catalyst Supports. *Catalysts*, *9*, 286-306. https://doi:10.3390/catal9030286

Marshall, C. J., and Kunkle, C. A. (1992). Mineral dye pigments. U.S. Patent No 5,106, 421.

Supplementary Table A.1 Whitewater analysis of the wood-free paper mill within a period of two months with average, minimum and maximum values.

t (day) ^a	COD (mg/L)	DOC (mg/L)	BOD5 (mg/L)	HCO ₃ ⁻ (mg/L)	Cl ⁻ (mg/L)	NO3 ⁻ (mg/L)	SO4 ²⁻ (mg/L)	Na ⁺ (mg/L)	K ⁺ (mg/L)	NH4 ⁺ (mg/L)	Ca ²⁺ (mg/L)	Mg ²⁺ (mg/L)	рН
AVG	303	94	166	153	40	8	179	78	0	2	59	15	7.5
MIN	190	31	80	50	25	1.6	109	62	0	1.7	41	10	6.8
MAX	500	175	254	269	62	15	309	95	1.5	3.5	88	29	8.2
-1	232	134	158	165	49	7.8	183	78	0	2.5	52	16	7
1	214	54		130	34	15	175	62	0		54	16	7.1
2	278	52	80	114	25	13	309	67	0		88	17	7.5
5	190	36		111	26	7.4	267	90	0	2	78	13	7.2
6	210	31		90	26	8.4	274	86	0	1.8	79	16	7.5
7	200	37		50	26	9.1	233	70	0		59	14	6.8
8	268	77	109	141	36	9.1	233	95	0	2.2	67	14	7.5
9	320	91		156	45	3.7	132	66	0		43	17	7.3
12	252	78		123	39	5.7	117	66	0	2.5	45	12	7.6
13	356	95		144	36	7.7	156	78	0		52	13	7.6
14	300	120	178	184	46	8.2	125	85	0	2.7	51	13	7.4
15	284	105		180	41	4	138	76	0	1.7	64	14	7.8
16	345	114		170	44	6	109	75	0	2	41	10	7.7
21	362	128		141	36	6.2	150	76	0	2	60	13	7.5
22	500	175	180	168	44	2.3	116	76	0	2.1	50	11	7.3
24	243	74		167	27	4.3	122	76	0		60	12	7.4
28	448	128	183	146	57	13	235	84	0	1.7	61	16	8.2
31	393	120	254	253	52	11.1	171	82	0	2.5	52	14	7.4
59	371	145	183	269	62	1.6	163	87	1.5		71	29	8.2

^a... -1 refers to one day before cleaning of the whitewater system and days 1-59 to sampling after restarting of the system.

Supplementary Table A.2. Organic additives used as carbon sources with abbreviation, their assumed shares in the industrial wood-free paper fiber slurry, calculated according to production sheets of four different paper grades of a wood-free paper mill and chemical structure with molar mass to calculate the calibration curves; for dyes maximum wavelength absorption or excitation/emission and dye intensity before and after centrifugation at $12,000 \times g$.

Abbr.	Share (%)	Chemical structure
CE	4	Microcrystalline cellulose (VWR, USA) CAS 9004-34-6; M (C ₁₂ H ₂₂ O ₁₁)=342 g/mol (monomeric unit)
CST	0.4	Cationic potato starch, degree of derivatization 0.04, based on integrals in ¹ H-NMR; M(C ₆ H ₁₀ O ₅)=162 g/mol
		(monomeric unit)
RES	0.4	Rosin, CAS No 8050-09-7; contains abietic and pimeric type resin acids; M(C ₂₀ H ₃₀ O ₂)=303 g/mol
AKD	0.18	Alkyl ketene dimers: 2-oxetanone, 3-C12-16-alkyl-4-C13-17-alkylidene derivatives, CAS No 84989-41-3; M=477 g/mol
WH	0.10	Whitening agent; fluorescent brightening agent; tetrasodium 2,2'-ethene-1,2-diylbis[5-({4-[bis(2-hydroxyethyl)amino] -6-[(4-sulfonatophenyl)amino]-1,3,5-triazin-2-yl}amino]benzenesulfonate]; spectral properties similar to 4,4'-diamino-2,2'-stilbenedisulfonic acid; $M(C_{42}H_{44}N_{12}Na_4O_{16}S_4)=1193$ g/mol; excitation at 315 nm with maximum emission at 430 nm; I _{cent} /I = 98%
NST	0.005	Native soluble starch, CAS 9005-25-8; $(2R,SS,4S,5R,6R)$ -2-(hydroxy methyl)-6-[$(2R(xy-oxane-3,4,5-triol,3S,4R,5R,6S)$ -4,5,6-tri hydroxy-2-(hydroxymethyl)oxan-3-y]oxy-oxane-3,4,5-triol; $M(C_6H_{10}O_5)$ =162 g/mol (monomeric unit)
ST	/	Starch, soluble (Sigma Aldrich, USA) CAS 9005-84-9; M(C ₆ H ₁₀ O ₅)=162 g/mol (monomeric unit)
RED	0.005	Direct red dye 253 (Marshall 1992), CAS 142985-51-1: Dinatrium;(3E)-7-[[4,6-bis(2-hydroxyethylamino)-1,3,5-
		triazin-2-yl]amino]-4-oxo-3-[[4-[(4-sulfonatophenyl)diazenyl]phenyl] hydrazinylidene] naphthalene-2-sulfonate;
		$M(C_{29}H_{26}N_{10}Na_2O_9S_2) = 769 \text{ g/mol}; \lambda_{max} = 510 \text{ nm}; I_{cent}/I = 100\%$
BLU	0.005	Blue dye, similar biodegradation to direct blue 15, CAS No. 2429-74-5. To evaluate the structural similarity of the dye
		BLU to DB15, cometabolism tests on 44 selected strains were compared for the biodegradation of BLU and DB15 dye
		in NB. After 72 h similar discoloration patterns were found. Direct blue 15 is 2,3,3'-[(3,3'-dimethoxy-4,4'-

		biphenylylene)bis(azo)]bis [5-amino-4-hydroxy-tetrasodium salt]; $M_{DB15}(C_{34}H_{28}N_6NaO_{16}S_4)=927$ g/mol; $\lambda_{max BLU}=560$ nm; $\lambda_{max DB15}=600$ nm; $I_{cent}/I = 100\%$
BLA	0.003	Black dye HM 2482, CAS No. 89857-06-7; 1,3'-bipyridinium,5'-[[4-[[7-[(1',2'-dihydro-6'-hydroxy-3,4-dimethyl-2'-oxo[1,3'-bipyridinium]-5'-yl)azo]-1-hydroxy-3-sulpho-2-naphthalenyl]azo]phenyl]azo]-1'-[3-(dimethylamino)propyl]-1',2'-oxo-, salt with 2-hydroxypropanoic acid; $M(C_{50}H_{57}N_{11}O_{14}S_4)=1068 \text{ g/mol}; \lambda_{max}=440, 590 \text{ nm}; I_{cent}/I = 96\%$
Y	0.003	Yellow dye containing C; H; N; O; S; stilbene derivative; M ^a =180 g/mol; λ_{max} =400 nm; I _{cent} /I = 50%
PVA LX	<0.001 <0.001	Polyvinyl alcohol, CAS 9002-89-5; $M(C_2H_4O)=44$ g/mol (monomeric unit) Latex dispersion, styrene-butadiene copolymer; $M(C_{12}H_{14})=158$ g/mol (monomeric unit)

^a Unknown structure, molar weight taken for glucose.

Supplementary Table A.3. Protocols with inoculum preparation and composition of media.

Test		Inoculum preparation	Carbon source	Selection media
Biodegradation	assays	Colony of the isolate on NB agar was picked	starch	M9 10 g/L ST
(see Section 2.3)		and transferred to a circle on selection media.		M9 10 g/L CST
		Incubation was at 25 °C for 7-13 days.		M9 10 g/L NST
			CE	M9 5 g/L CE
			RES	M9 0.25 g/L RES
			AKD	M9 0.25 g/L AKD
			PVA	M9 5 g/L PVA
			LX	M9 0.25 g/L LX
		Colony of the isolate on NB agar was picked	BLU	NB + 6 mg/L BLU
		and transferred into M9 media with 47 mg/L of	RED	NB + 15 mg/L RED
		appropriate dye or whitener. After incubation	BLA	NB + 57 mg/L BLA
		at 25 °C for 3 days 10 μ L of the culture was	WH	$M9_{Glc}$ + 0.9 g/L WH; supernatant
		transferred into the selection medium.		20-times diluted

		Y	M9 95 mg/L yellow dye and M9 47 mg/L glucose
Time-dependent	A colony was transferred into corresponding	RED	NB + 13 mg/L RED
degradation	M9 media with 47 mg/L of appropriate dye or	BLU	NB + 10 mg/L BLU
determination	whitener. After incubation at 25 °C for 3 days 10 μ L of the culture was transferred into the selection medium.	WH	$M9_{Glc}$ + 0.5 g/L WH; supernatant 20-times diluted
Tests for the repertoire of	A colony was transferred into M9 _{Glc} for 3 days	CST	M9 0.5 g/L CST
carbon source usage (see	at 25 °C. 10 µL of the culture was transferred	ST	M9 0.5 g/L ST
Section 2.7)	into the selection medium.	AKD	M9 4 g/L AKD
		RED	$M9_{Glc} + 5 mg/L RED$
		BLU	$M9_{Glc} + 5 mg/L BLU$
		WH	$M9_{Glc} + 5 \text{ mg/L WH}$
		BLU	NB + 5 mg/L BLU
		CE	20 mL / plate; M9 agar with 5 g/L CE
		CST	15 mL / plate, M9 agar with 5 g/L CST
		AKD	20 mL / plate, M9 agar with 0.25 g/L AKD
		RES	20 mL / plate, M9 agar with 0.25 g/L RES
<i>In vitro</i> co-culturing test (<i>see</i> Section 2.8)	The growth of the six selected isolates was calibrated with determining cfu vs. OD_{600} . Overnight culture was harvested in NB,	synthetic whitewater	M9 (CST, PVA, RES, DB15); in the ratio CST : PVA : RES : DB15 = 1 : 1 : 1 : 0.5
	cleared three times in 9 g/L NaCl. OD_{600} was measured and a calibration curve was generated. The amount of volume was adjusted so that an equal initial sum of bacteria per each medium was added, i.e. 10^7 CFU/mL.	industrial whitewater	M9 sterile whitewater

Proof of concept pilot test	Separate overnight cultures of the four bacteria	industrial	whitewater (unsterile) with a
(see Section 2.9)	of the consortium harvested in NB, cleared in 9 g/L NaCl, OD ₆₀₀ measured and CFU	whitewater	urea and H_3PO_4 in the ratio C N : P = 100 : 5 : 1
	calculated.		

Supplementary Table A.4. Selected isolates, active for the carbon source which they used during isolation with numbers of isolated bacteria per carbon source and results of biodegradation assays - C/C_0 and OD_{600} values and test durations.

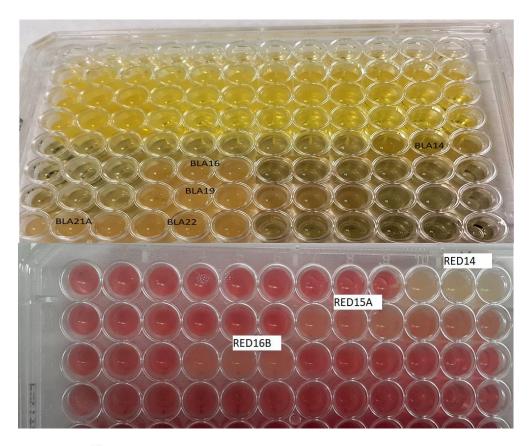
Carbon source	Number of isolates	Active isolate	C/C0 (%)	OD ₆₀₀ (/) ± RSE(%)	t (d)	C ₀ (g/L)
Cationic starch	44	CST37	75	/	9	10
		CST5	83	/		
		CST10	83	/		
		CST16	83	/		
Native starch	31	NST20	83	/	11	10
		NST22	87	/		
Starch, soluble	35	ST12	72	/	13	10
		ST14	0	/		
		ST16	0	/		
Resin	20	RES19	39	/	7	0.25
		RES9	75	/		
		RES13	75	/		
		RES15	75	/		
AKD	27	AKD4	51	/	7	0.25
		AKD5	46	/		
		AKD13	75	/		
		AKD19A	75	/		
PVA	20	PVA19	13	/	7	5
		PVA20	75	/		
		PVA3	75	/		
		PVA7	75	/		
		PVA14	83	/		
Cellulose	22	CE12	0	/	11	5
		CE21	0	/		-
		CE7	81	/		
		CE17	46	/		
Latex	23	LX13	31	/	7	0.25
	-	LX11	75	/		- · -
		LX8	84	/		
Red	20	RED14	0	1.4±4	2	0.015
		RED14A	20	1.5±5	-	01010
		RED15A	0	1.0±9		
		RED16R	11	1.7±1		
Blue	27	BLU19	80	0.6 ± 7	0.75	0.006
2140	_ /	BLU23	60	1.6 ± 5	0.75	0.000
Whitener	12	WH8	59	0.13±2	3	0.9

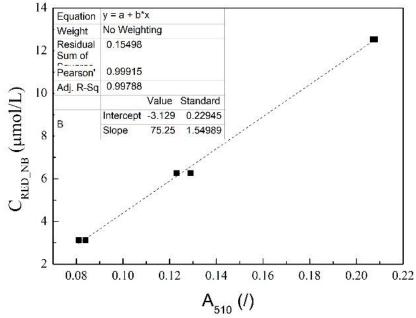
		WH5	99	0.04±7		
Yellow	14	Y19	50	0.02 ± 0	7	0.095
		Y17	53	$0.02{\pm}1$		
		Y18	60	$0.01{\pm}1$		
		Y14A	92	$0.01{\pm}1$		
Black	23	BLA14	70	1.8 ± 2	2.8	0.057
		BLA16	70	2.4±3		
		BLA19	84	2.3±3		

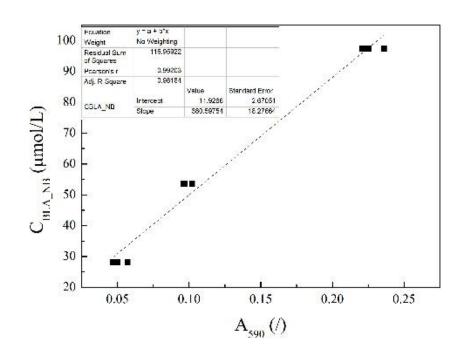
Supplementary Table A.5. AKD degradation confirmed by decrease in absorption and DOC removal, presented in C/C₀ values; the bacteria were inoculated for 62 h, initially 10^8 cfu/mL and C₀ 4 g/L.

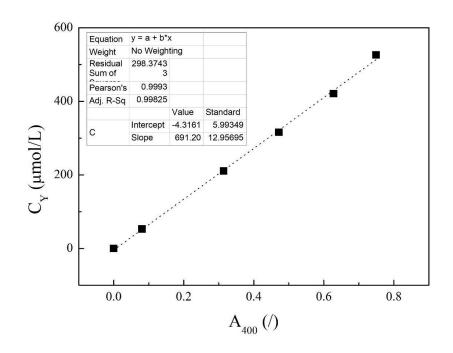
Isolate	C/C_0 (%) ± RSE (%)	
	Absorption	DOC
CST37	56±0	62±0
AKD4	57±0	66±1
RES19	56±0	71±1
BLA14	100±1	100±1

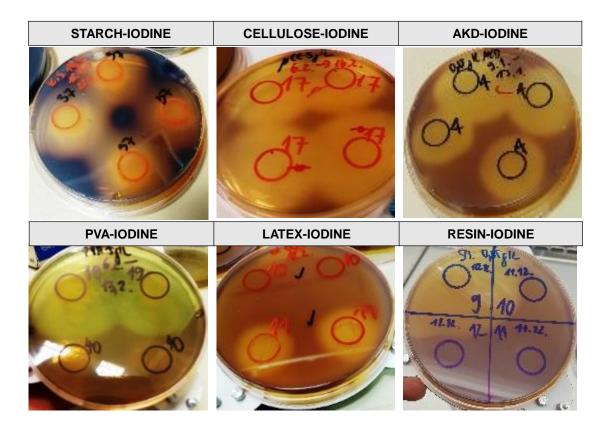

Supplementary Table A.6. Results of the time-dependent activity of the most active red, blue and whitener dye degraders for the dye they used during isolation at 25 °C. Degradation is presented in percentages of C/C₀ values \pm relative standard errors of triplicates. WH5 and WH8 after 165 h were 10⁹ and 6×10¹⁰ CFU/mL, respectively.

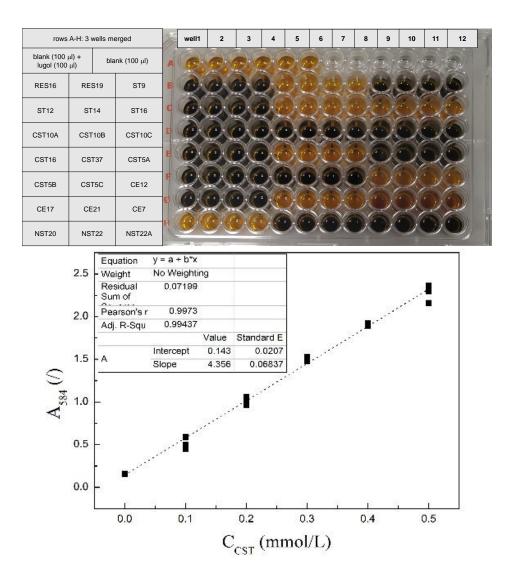

Dye	Isolate	C/C _{0 \lambda}	x (%)±RSE	(%)		OD600 (/	OD ₆₀₀ (/)±RSE (%)							
		24 h	48 h	72 h	165 h	0 h	24 h	48 h	72 h	165 h				
BLU	BLU19	40±3	19±1	13±2	/	0.01 ± 0	$0.6{\pm}1$	0.9±2	0.9±1	/				
	BLU23	33±2	17±1	12±2	/	0.01 ± 0	0.6 ± 1	0.9±3	0.8 ± 3	/				
RED	RED14	6±3	-7±2	-15±1	/	0.01 ± 1	$0.1{\pm}1$	1.3±4	1±0.5	/				
	RED14A	103±0	2.8±3	-14±3	/	0.02 ± 2	0.1 ± 6	1.1 ± 2	1±8.5	/				
	RED15A	60±3	-16±0	-16±1	/	0.01 ± 1	0.6 ± 6	$1.1{\pm}1$	1 ± 8	/				
	RED16B	65±4	35±2	68±6	/	0.01 ± 1	0.1±7	1.6 ± 5	1.8 ± 5	/				
WH	WH8	98±3	92	85±2	75±3	$0.00{\pm}1$	0.03 ± 2	$0.04{\pm}10$	0.06 ± 4	0.3±1				
	WH5	96±2	95.5	95±2	84±7	0.00 ± 0	0.00 ± 2	0.00 ± 2	0.01±2	0.01±3				



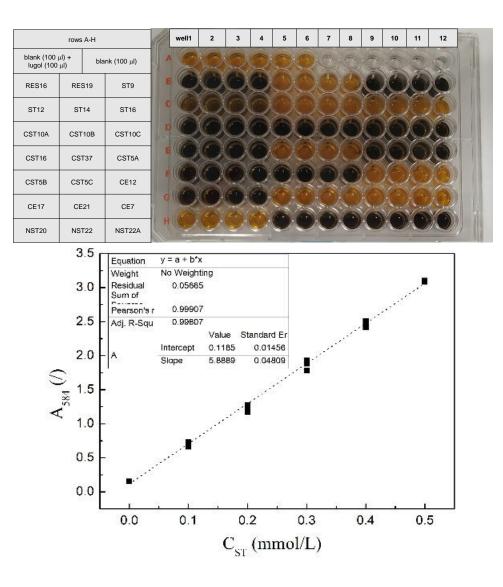

(A)



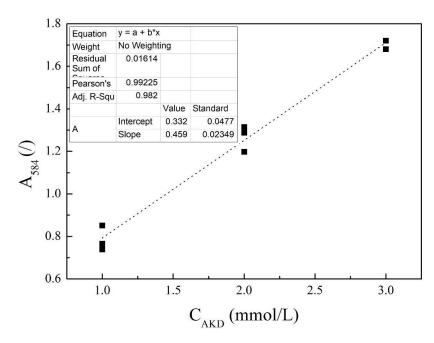


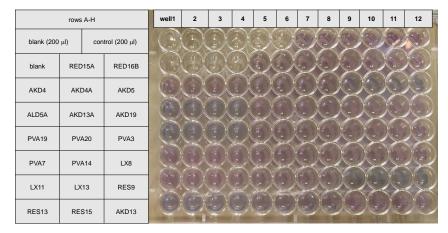

(D)

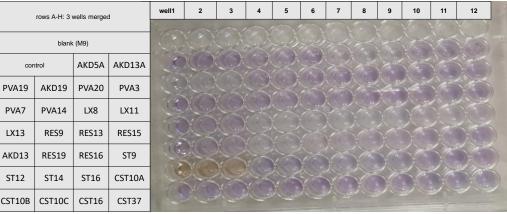
(**C**)

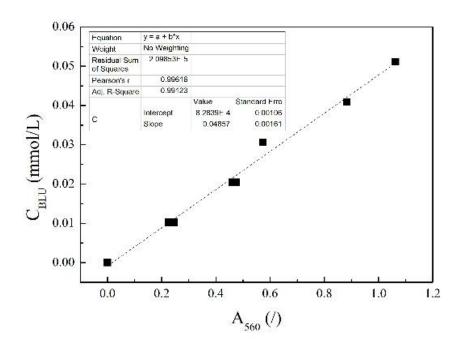


Supplementary Figure A.1. Biodegradation assays: (**A**) above: incubation microtiter plate with 27 BLU isolates in NB with 6 mg/L blue dye, in triplicates, after 18 h at 25°C, below: calibration curve with R²=0.995; (**B**) above: incubation microtiter plate with 12 RED isolates in NB with 15 mg/L red dye, in triplicates, after 48 h at 25°C, below: calibration curve with R²=0.999; (**C**) above: microtiter plate rows E-H: 14 BLA isolates in NB with 57 mg/L black dye, in triplicates, after 66 h at 25°C, below: calibration curve for black dye in NB with R²=0.993; (**D**) calibration curve of yellow dye with R²=0.999; (**E**) images of M9 agar CST, CE, AKD, PVA, LX and RES after 7-13 days incubation at 25°C without corrections. Above from left to right: Starch-iodine complex formation and distinct discoloring around CE17, AKD-iodine complex and distinct discoloring around AKD4; below from left to right: PVA-iodine complex and distinct discoloring around LX11 compared to the inactivity of LX10 and RES-iodine complex formation and distinct discoloration around RES9 compared to the inactivity of RES10, RES11, RES12.

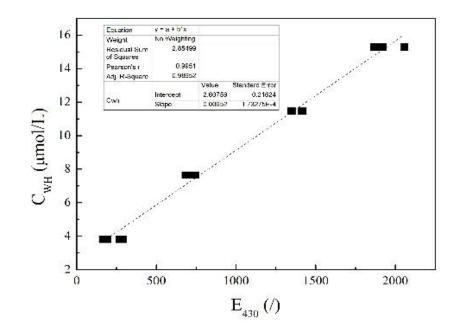

(A)

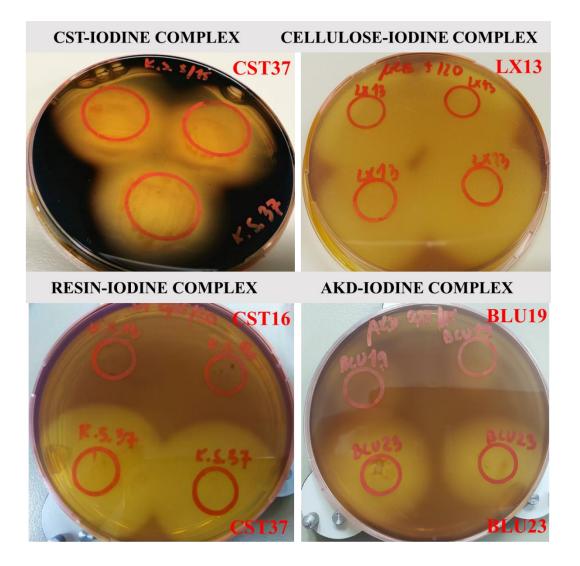

(**C**)


rows	rows A-H: 3 wells merged			2	3	4	5	6	7	8	9	10	11	12
blank (100 µl) + control (100 µl) + lugol (100 µl) lugol (100 µl)			Q	Q)(*	X		0	
RES16	RES19	ST9	0	Q	\bigcirc		0			X	X	X	X	Ø
ST12	ST14	ST16		Q	\mathbb{Q}		\mathbf{O}	۲			X)C	X	
CST10A	CST10B	CST10C		R	\gtrsim	\mathbb{R}	\mathbb{Q}							
CST16	CST37	CST5A		X	$\langle \rangle$	\prec	R	\geq			$\langle \rangle$	\langle	$\langle \cdot \rangle$	$\langle\!$
CST5B	CST5C	CST37	\mathbb{R}	4		\preccurlyeq	R	X		$\langle \rangle$	$\langle \rangle$	\diamond	\diamond	$\langle\!$
CE17	CE21	CE7	\otimes			\triangleleft	\leq	X			$\langle \rangle$	\diamond	\diamond	*
NST20	NST22	NST22A	Q.C					I						

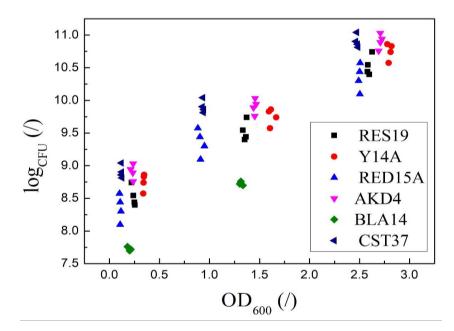

(B)

(D)

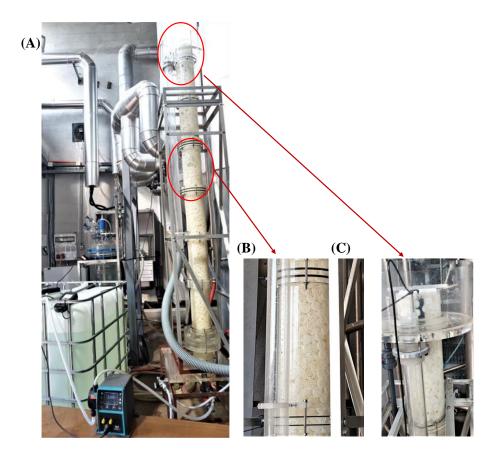

(E)

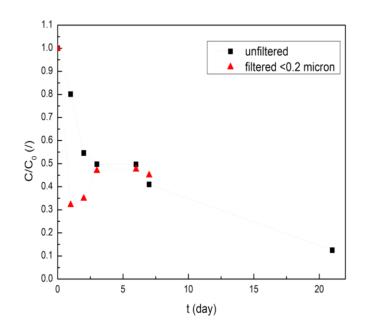

	rows A-H	ws A-H		well1	2	3	4	5	6	7	8	9	10	11	12
blank (200	blank (200 µl) control (200 µl)		1 de		1	2	2	2	1.1.1						S
	blank					1	12.00			1	U.S.				
AKD4	AKD4A	AKD5			1	2					5				\bigcirc
ALD5A	AKD13A	AKD19													
PVA19	PVA20	PVA3		1		\sim	$\langle \rangle$								
PVA7	PVA14	LX8			$\langle \rangle$	~~	$\langle \rangle$	$\langle \rangle$			*	(
LX11	LX13	RES9		3	$\langle \cdot \rangle$	*		$\langle \rangle$			*				jen -
RES13	RES15	AKD13		~							-				

rows A-H: 3 wells merged			well1	2	3	4	5	6	7	8	9	10	11	12	
blank (M9)				10	K)		T	(Y)	2		(~<	Ser.			
control		AKD5A	AKD13A			5-2	2								
PVA19	AKD19	PVA20	PVA3		June -	>~	>		Sur				\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
PVA7	PVA14	LX8	LX11		×	1. C	\$-~~	>-<	><	$\langle \rangle$		V.		V	
LX13	RES9	RES13	RES15		1		>~	>			$\langle \rangle$		Y.	X	
AKD13	RES16	RES19	ST9		5.			$\langle \rangle$	$\langle \rangle$	$\langle \cdot \rangle$	$\langle \cdot \rangle$			Y	
ST12	ST14	ST16	CST10A	B C			×	×		$\langle \rangle$	$\langle \rangle$			X	1.5
CST10B	CST10C	CST16	CST37		X	X	X	X	il.	N.		人			



(F)

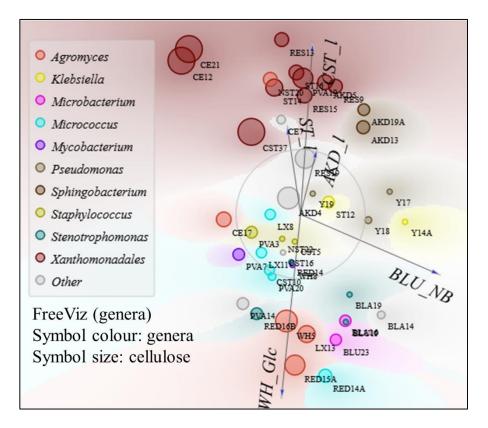


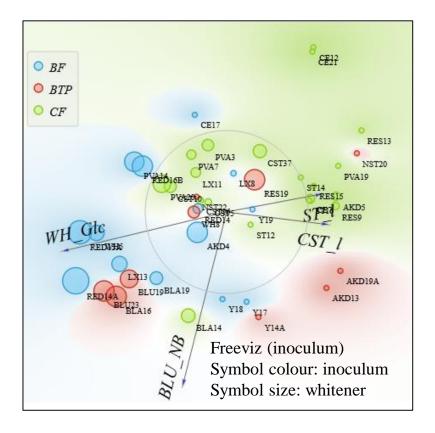


Supplementary Figure A.2. Tests for reservoir of carbon source usage. (A) M9 0.5 g/L CST: above: microtiter plate after addition of Lugol, below: calibration curve (R^2 =0.997); (B) M9 0.5 g/L ST: above: microtiter plate after addition of Lugol, below: calibration curve (R^2 =0.999); (C) M9 4 g/L AKD: above: microtiter plate after addition of Lugol, below: calibration curve (R^2 =0.999); (D) BLU in M9_{Glc}: above: microtiter plate after 4 days at 25°C, middle: supernatants, below: calibration curve (R^2 =0.996); (E) RED in M9_{Glc}: above: microtiter plate after 4 days at 25°C, middle: supernatants, below: calibration curve (R^2 =0.996); (E) RED in M9_{Glc}: above: microtiter plate after 4 days at 25°C, middle: supernatants, below: calibration curve (R^2 =0.999); (F) WH in M9_{Glc} calibration curve (R^2 =0.996); (G) above from left to right: Cationic starch-iodine complex formation after addition of Lugol and distinct discoloration around CST37. Cellulose-iodine formation and distinctive discoloration around colonies of CST37 in comparison to inactivity of CST16. AKD-iodine complex formation and discoloration and discolo

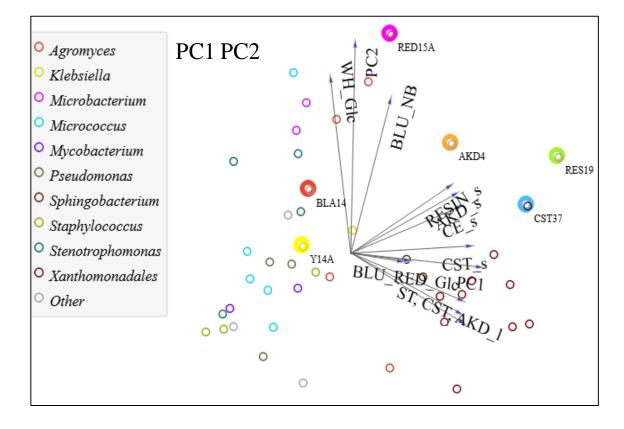
Supplementary Figure A.3. Calibration of the growth of the 6 selected bacteria; log(CFU) vs. OD₆₀₀.

(E)

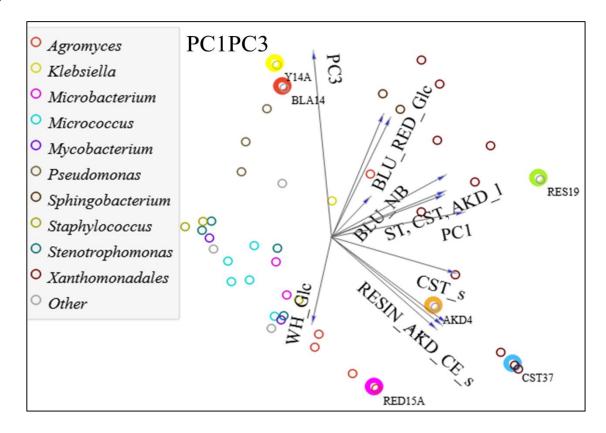


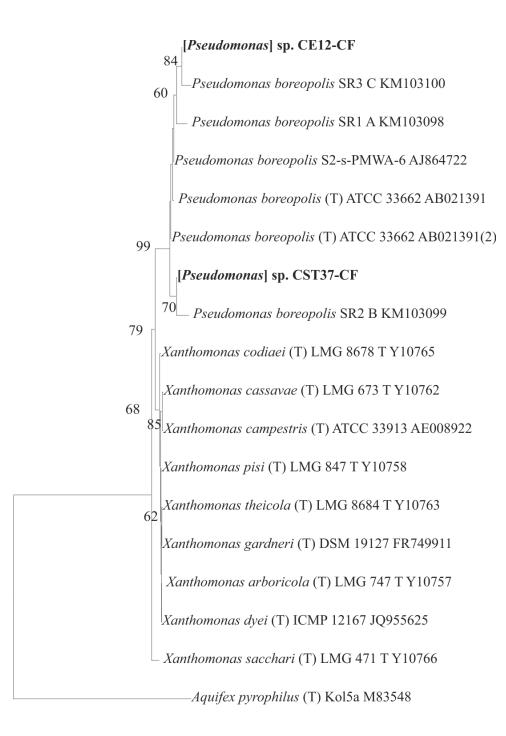

Supplementary Figure A.4. Pilot test (for proof of concept only): (A) Photograph of the set-up: a 33 L column with parallel flow of whitewater and air entering at the bottom of the column; (B) part of the column filled with plastic carriers "Kaldens"; (C) upper part of the column with inserted oxygen electrode; (D) C/C₀ from COD measurements of influent and effluent whitewater as a function of time; whitewater samples unfiltered and filtered through 0.2 μ m membrane, (E) A representative image of

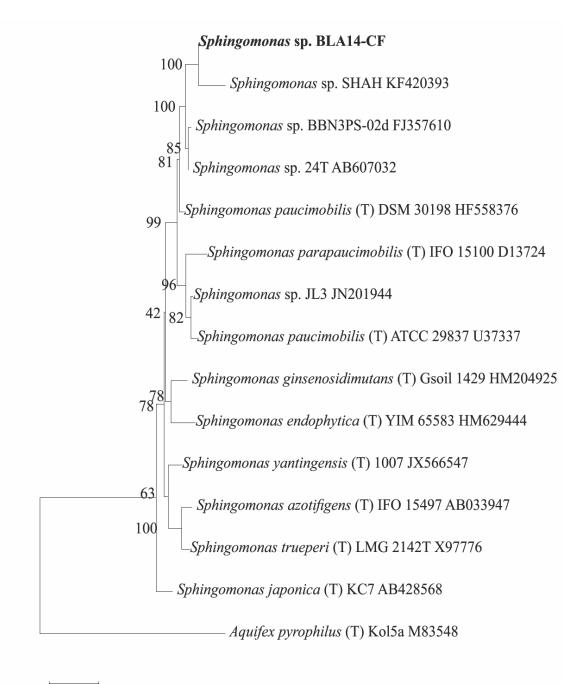
(D)


the colonies obtained with the microscope Motic SMZ-168- BL in a parfocal 6.7:1 zoom. The CFU count was as follows: 3×RES19, 2×CST37 and 13×AKD4.

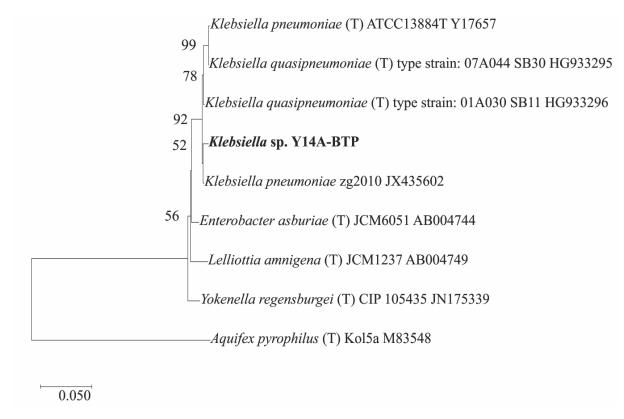
(A)

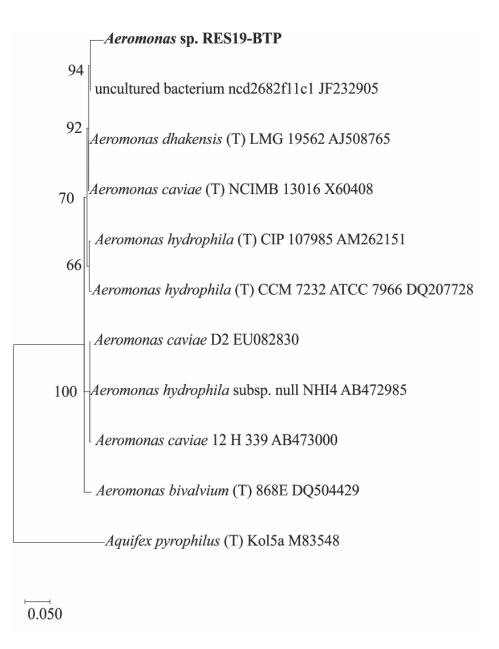



(**C**)



Supplementary Figure A.5. FreeViz and PCA of tests for the repertoire of carbon sources of 44 isolates in liquid and solid media. FreeViz projection with (**A**) clusters of genera and symbol size for cellulose and (**B**) clusters of inoculum and symbol size for whitener degradation, PCA with clusters for genera and marked 6 selected strains, RED15A (circled in pink), BLA14 (blue), Y14A (yellow), RES19 (green), AKD4 (brown) and CST37 (red): (**C**) PC1PC2 with 67% and (**D**) PC1PC3 with 65% explained variances.





(B)

Cellulosimicrobium sp. AKD4-BF 83 Cellulosimicrobium sp. 20.2 KSS HE575928 71 Cellulosimicrobium funkei R6-420 JQ659850 91 98 Cellulosimicrobium cellulans PrF HG000003 100 Cellulosimicrobium funkei (T) W6122 AY501364 55 Cellulosimicrobium cellulans (T) DSM 43879 X83809 -Luteimicrobium xylanilyticum (T) W-15 JQ039191 96 Isoptericola dokdonensis (T) DS-3 DQ387860 -Agromyces soli (T) MJ21 GQ241325 Agromyces tropicus (T) CM9-9 AB454378 100 *₄Agromyces* sp. m8-14 HM587928 53 100 bacterium JP37 KC602271 76 Agromyces sp. RED15A-BF 71 Agromyces indicus (T) NIO-1018 HM036655(2) Aquifex pyrophilus (T) Kol5a M83548

0.050

Supplementary Figure A.6. Detailed phylogenetic trees displaying the phylogenetic position of six selected isolates with their closest neighbors are presented. *Aquifex pyrophilus* (T) was used as an outlier. Numbers indicate the percentages of bootstrap support, derived from 1000 re-samplings. The evolutionary history was derived using the Neighbor-Joining method (Saitou and Nei, 1987). (A) Xanthomonadales bacterium strain CST37, (B) *Sphingomonas* sp. strain BLA14-CF, (C) *Cellulosimicrobium* sp. strain AKD4-BF together with *Agromyces* sp. strain RED15A, (D) *Klebsiella* sp. strain Y14A-BTP and (E) *Aeromonas* sp. RES19-BTP.