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1 ANALYSIS OF THE QUBO PROBLEM
In this section, we provide an analysis to determine the values of λi such that the structure of the original
problem can be kept unchanged in the reformulated QUBO problem. Recall that the penalty method yields
the augmented QUBO Hamiltonian:

HQUBO(x) = H∗(x) +
∑

i
λiP

2
i (x), λi ∈ R, (S1)

where H∗ =
∑

i,j,k pkωjxijk and with penalty terms:

P 2
1 (x) = (

∑
j
xijk − s1,ik)2, (S2)

P 2
2 (x) = (

∑
i,j

xijk − s2,k)2, (S3)

P 2
3,4(x) = (

∑Dil

j,k=1
ωjxijk −

∑Di(l+1)

k=1
cik − s3,4,il + 0.7)2, (S4)

P 2
5 (x) = (

∑
j,k∈[Sil,Dil]

xijk(1− xij(k+1))− s5,il)2. (S5)

Following the method from Lucas (2014), a valid QUBO problem is such that:

∀x1 ∈ C,x2 /∈ C : HQUBO(x1) < HQUBO(x2), (S6)

∀x1,x2 ∈ C and H∗(x1) < H∗(x2) : HQUBO(x1) < HQUBO(x2), (S7)

with C the set of all viable solutions x. Besides, the penalty function P has the following property:

∀i, ∀x ∈ C : Pi(x) = 0; ∀x′ /∈ C, Pi(x′) 6= 0. (S8)

Let Pi,min := minPi(x
′) denote the minimum value of the penalty Pi for a non-feasible x′, and ∆H :=

maxH∗ − minH∗. In order to satisfy condition (S6), we require ∀i : minx′ /∈CH
∗(x′) + λiP

2
i (x) >

maxx∈CH
∗(x)′ + λiP

2
i (x), i.e.

∀i : ∆H < λiP
2
i,min, (S9)

which yields
max p×maxω × Ltime ×Npile ×Nbus < λiP

2
i,min, (S10)

where the left hand side is an upper bound of ∆H . However we can prove that we can only have Pmin when
1 bus breaks the constraint on 1 pile. Then we can remove the term Nbus×Npile out of the left terms, so the
inequality (S9) does not scale with the problem size. Continuing it is easy to see that P1,min = P2,min = 1,
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thus:
λ1,2 > max p×maxω × Ltime. (S11)

Note that the choice of units for the electricity price p and power ω is arbitrary. In our unit settings, we
have λ1,2 > 10.

Penalty P3,4 from (S4) contains continuous variables s3,4,il. Hence, the minimum value of P3,4 is
arbitrarily small: P3,4,min = ξ, where ξ → 0. This implies:

λ3,4 >
max p×maxω × Ltime

ξ2
−→∞. (S12)

To handle this problem, we modify P3,4 with an additional variable ε. Recall that P3,4 is used to control the
state of charge (SOC) of the bus between 0.3 and 1, and in the penalty method, we write these constraints
with slack variable s3,4,il ∈ [0, 0.7−

∑Si(l+1)

k=Dil
cik]. Modifying P3,4 to control the SOC between 0.3 + ε and

1− ε brings P 2
3,4,min = ε2, from which follows the modified lower bound λ′3,4:

λ′3,4 >
max p×maxω × Ltime

ε2
. (S13)

Similarly to λ1,2 the lower bound depends on the arbitrary unit setting and choice of ε. Here, we set
ε = 0.1, and λ′3,4 > 1000. Observe that controlling SOC ∈ [0.3 + ε, 1 − ε] produces a new, reduced,
viable solution space which may not include the original optimal solution. However, as long as ε remains
small, this modification should have little practical impact. On the other hand, another approach consists in
discretizing the consumption cik; the effect is similar to introducing ε.

Next, we discuss condition (S7). To do so, let us first revisit the binary encoding of continuous variables
and the discretization error. For a continuous variable c, when using N bits, the discretization error e is
e = 1

2 ×
(

1
2N−1

)
≈ 1

2N+1 . Let δH denote the minimal gap of the objective function between two valid
solutions, Then condition (S7) can be satisfied by having:

δH > λie
2, (S14)

which gives λ3,4 <
min δp×ω
2−2N−2

, and does not apply to λ1,2, where min δp is the minimal price difference
between any two given times during the day (including the difference between lowest price and 0). In
practice, when using N = 8 bit to encode the continuous variables, the upper bound is approximately 104.

Finally, observe that penalty P5 (S5) is a polynomial of order 4, and is not discussed here. Mandal
et al. (2020) suggest some methods to reformulate high-order terms in quadratic form. However, P5 is to
guarantee that a bus does not switch from one pile to another during one charging window, which might be
neglected whenever Ltime is small enough, i.e. each time step is long enough. Consequently, we choose
first to discard this constraint in the penalty method and discuss it again in Section 4, where we break the
limitation of the penalty method.
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Figure S1. 15 Typical bus schedules used for random problem generation. Bump in the curve indicate
when the bus is in the station and available for charging.

2 MORE EXPERIMENTAL RESULTS
2.1 Problem Generation

Figure S1 displays the 15 typical bus schedules which are used to generate different charging scheduling
problems in Section 4. For each problem, we first randomly pick Nbus schedules. The power ratings of
Npile charging piles are also randomly generated, while kept in a reasonable interval so that there will be at
least one possible solution.
2.2 Solving different problems with the quantum annealing sampler

Besides the results shown in Figure 2, Figure S2 displays more experiments with problems of different
scales, from Nbus = 1, Npile = 1, Ltime = 24 to Nbus = 2, Npile = 1, Ltime = 48, under different penalty
coefficients and different chain strengths. Similar behaviours are observed for all cases, where the optimal
combinations for two parameters are found near the diagonal line. It is also observed that the ratio between
the optimal penalty coefficient and the chain strength tends to grow larger as the problem size increases.

Frontiers 3



Supplementary Material

a.1) a.2)

a.3) a.4)

b.1)

b.2)

b.3)

b.4)

Figure S2. (a.1-4) Time to 99%−success in µs under different annealing parameters P, Jchain strength of
quantum annealing, estimated from 1000 experiments for models visualized in (b.1-4), with 1 indicating
that the bus is in the station and 0 otherwise. Note that in (a.4), the success is defined by obtaining a
solution with cost not greater than 1.3 times the exact solution provided by Cplex solver, which differs
from (a.1-3), where the success is defined by obtaining exactly the optimal solution.
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2.3 Supplementary results for the Hubbard-Stratonovich transformation approach
Figure S3 shows the evolution of both the multipliers and the penalties when applying the iterative

approach discussed in Section 3 and experimented in Section 4, for the same run as the one in Figure
3 (a-b). These plots illustrate the advantage of using adaptive gradient: taking P01, ν01 as an example,
there are only three times among 96 iterations when P01 is non-zero. However, with adaptive gradient, the
multiplier ν01 does reach its optimal value, which is around 10. Suppose we were using a fixed learning
rate to update ν, it would take much more iterations to find the same optimal value.

Figure S3. Multipliers ν and penalties P over iterations with the Hubbard-Stratonovich transformation.
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