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APPENDIX A

PROOF OF THEOREM 1

Let the noise variance be non-zero, i.e., σ2 > 0, the transmit power be finite, i.e., Pmax
n <∞,

and the channel realizations be bounded. Then, the SINR expressions (13) and (14) are finite, i.e.,

γpg,k < ∞, ∀g ∈ G, and γcg,k < ∞, ∀k ∈ Mg, ∀g ∈ G. The limit of average spectral efficiency

exists, when the sample size M tends to infinity. Let W be the feasible set of beamforming

vectors determined by constraint (19c) . All previous assumptions make sure, thatW is compact

and not empty. Now, considering the ergodicity assumption and the law of large numbers, we

make the following statement [1, Theorem 7.48]

sup
w∈W

∣∣∣∣ 1

M
log2(1 + γog,k)− Eh{log2(1 + γog,k)}

∣∣∣∣→ 0, as M →∞, o ∈ {p, c}. (43)

Thus, given unlimited sample size, the SAA estimate of the rates converges to the ergodic rate

uniformly on the compact set W with probability one. Therefore, the set of optimal solutions

of problem (23) converges uniformly to the optimal solution set of problem (22) [1, Theorem

5.3]. This completes the proof.

APPENDIX B

PROOF OF THEOREM 1

The steps in this proof can be seen analog to [2, Theorem 2]. Let Gg(w
p
g,w

c
g,ρ

p
g,ρ

c
g,u

p
g,u

c
g) =

Gp
g(w

p
g,ρ

p
g,u

p
g) +Gc

g(w
c
g,ρ

c
g,u

c
g), where we define the following two functions

Gp
g(w

p
g,ρ

p
g,u

p
g) =

B

M log(2)

M∑
m=1

max
upg,k(m),ρpg,k(m)

(
log(ρpg,k(m))− ρpg,k(m)epg,k(m) + 1

)
, (44)

Gc
g(w

c
g,ρ

c
g,u

c
g) =

B

M log(2)

M∑
m=1

min
k∈Mg

(
max

ucg,k(m),ρcg,k(m)

(
log(ρcg,k(m))− ρcg,k(m)ecg,k(m) + 1

))
.

(45)

Using these definitions, we formulate following problem

max
V3

∑
g∈G

Gg(w
p
g,w

c
g,ρ

p
g,ρ

c
g,u

p
g,u

c
g) (46a)

s.t. (19c),∑
g∈Gp

n

Gp
g(w

p
g,u

p
g,ρ

p
g) +

∑
g∈Gc

n

Gc
g(w

c
g,u

c
g,ρ

c
g) ≤ Fn, ∀n ∈ N . (46b)
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Here V3 ,
{
wp
g,w

c
g,ρ

p
g,ρ

c
g,u

p
g,u

c
g| ∀g ∈ G

}
is the set of optimization variables. Note, that

problem (34) is the epigraph form of problem (46). According to [3, Chapter 4], problems (34)

and (46) and their respective optimal solutions are equivalent. Therefore, we are able to use

problem (46) as an equivalent formulation of problem (34) throughout this proof for simplicity

reasons.

As Algorithm 2 is a block coordinate ascent algorithm operating iteratively, in iteration ν, we

solve the following convex optimization problem

max
V4

∑
g∈G

Gg(w
p
g,w

c
g, (ρ

p
g)
ν , (ρcg)

ν , (upg)
ν , (ucg)

ν) (47a)

s.t. (??),∑
g∈Gp

n

Gp
g(w

p
g, (u

p
g)
ν , (ρpg)

ν) +
∑
g∈Gc

n

Gc
g(w

c
g, (u

c
g)
ν , (ρcg)

ν) ≤ Fn, ∀n ∈ N , (47b)

where V4 ,
{
wp
g,w

c
g| ∀g ∈ G

}
. Note that the fixed values, i.e., (ρpg)

ν , (ρcg)
ν , (upg)

ν , (ucg)
ν , are

computed by (ρpg,k)
ν = 1/epg,k,mmse, (ρci,k)

ν = 1/eci,k,mmse, (28), and (29), using the optimal beam-

forming vectors computed in iteration (ν− 1). We define the objective function of problem (46)

as Q(wp
g,w

c
g,ρ

p
g,ρ

c
g,u

p
g,u

c
g). Since Q is a concave function and the achievable ergodic rates are

bounded, the sequence {Q((wp
g)
ν , (wc

g)
ν , (ρpg)

ν , (ρcg)
ν , (upg)

ν , (ucg)
ν)}∞ν=0 increases monotonically

after each iteration and converges to the limit point Q̄. Since the feasible set defined by constraints

(19c) and (47b) is compact, {(wp
g)
ν , (wc

g)
ν}∞ν=0 must have a cluster point {w̄p

g, w̄
c
g}. Meaning,

it exists a subsequence {(wp
g)
ν1 , (wc

g)
ν1}∞ν1=Λ for Λ > 0 that converges to {w̄p

g, w̄
c
g}. Thus, the

following statement holds

lim
ν1→∞

{(wp
g)
ν1 , (wc

g)
ν1 , (ρpg)

ν1 , (ρcg)
ν1 , (upg)

ν1 , (ucg)
ν1} = {w̄p

g, w̄
c
g, ρ̄

p
g, ρ̄

c
g, ū

p
g, ū

c
g}. (48)

Note that ρ̄pg, ρ̄
c
g, ū

p
g , and ūcg are computed based on the beamforming vectors using the contin-

uous functions (28), (29), ρpg,k = 1/epg,k,mmse, and ρci,k = 1/eci,k,mmse. At this point, we have shown

that {ρ̄pg, ρ̄cg, ūpg, ūcg} are optimal when {wp
g,w

c
g} = {w̄p

g, w̄
c
g}. Following up, we show that the

same applies vice versa, i.e., {w̄p
g, w̄

c
g} is optimal when {ρpg,ρcg,upg,ucg} = {ρ̄pg, ρ̄cg, ūpg, ūcg}. With

the optimal beamforming vectors from the previous iteration, and monotonicity of the objective
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function we write

Q((wp
g)
ν1+1,(wc

g)
ν1+1, (ρpg)

ν1+1, (ρcg)
ν1+1, (upg)

ν1+1, (ucg)
ν1+1)

≥ Q((wp
g)
ν1+1, (wc

g)
ν1+1, (ρpg)

ν1 , (ρcg)
ν1 , (upg)

ν1 , (ucg)
ν1)

≥ Q(wp
g,w

c
g, (ρ

p
g)
ν1 , (ρcg)

ν1 , (upg)
ν1 , (ucg)

ν1), ∀wp
g,∀wc

g. (49)

Taking the limit in this equation, we obtain the following relation

Q̄ = Q(w̄p
g, w̄

c
g, ρ̄

p
g, ρ̄

c
g, ū

p
g, ū

c
g) ≥ Q(wp

g,w
c
g, ρ̄

p
g, ρ̄

c
g, ū

p
g, ū

c
g), ∀wp

g,∀wc
g. (50)

Therefore, {w̄p
g, w̄

c
g} are the optimal beamforming vectors of problem (46). We have now

shown that {w̄p
g, w̄

c
g} is optimal when {ρpg,ρcg,upg,ucg} = {ρ̄pg, ρ̄cg, ūpg, ūcg}. At last, it can be

shown that {w̄p
g, w̄

c
g, ρ̄

p
g, ρ̄

c
g, ū

p
g, ū

c
g} is a KKT solution to problem (46) by checking the KKT

conditions. At this point, we have shown the solution set generated by Algorithm 2 converges to

a KKT solution of problem (46). KKT points are not necessarily unique, however, any sequence

{(wp
g)
ν , (wc

g)
ν , (ρpg)

ν , (ρcg)
ν , (upg)

ν , (ucg)
ν}∞ν=0 converges to the KKT solution in the limit. This

proof relates on the equivalence of problem (34) and problem (46). Therefore, we conclude

that {w̄p
g, w̄

c
g, ρ̄

p
g, ρ̄

c
g, ū

p
g, ū

c
g, R̄

p
g, R̄

c
g} is also a KKT solution to problem (46), where we have

Q(wp
g,w

c
g,ρ

p
g,ρ

c
g,u

p
g,u

c
g) =

∑
g∈G(R̄p

g + R̄c
g). This completes the proof.
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