
1

APPENDIX

A. Proof of Theorem 1

To prove theorem 1, we use results from [43] to show the asymptotic convergence of SAA

expressions to the ergodic quantities. We start by showing that some necessary technical as-

sumptions are fulfilled in our problem. We focus on scenarios for which the problem is feasible,

i.e., without loss of generality we focus on the scenario for which the C-RAN is able to allocate

resources such that the QoS requirements of all users can be satisfied, i.e., the feasible set is

compact and not empty. Let us assume that the noise variance is non-zero, i.e., σ > 0 and the

transmit power is finite, i.e., P Tr(w) <∞ ∀n ∈ N . Note that such assumptions are quite natural

as the transmit power in practical systems is physically limited to a certain value. Then the SINR

expressions in (9) and (10) are finite, given that the channel realizations of each user are bounded.

That is, we have the following: γpk(w) <∞ ∀k ∈ K, γck,i(w) <∞ ∀i ∈Mk,∀k ∈ K, where

the dependency of SINR expressions on the beamforming vectors is made explicit. Then, the

limit of average spectral efficiency when the sample size tends to infinity exists. From ergodicity

assumption of the channel distribution, and the law of large numbers the following holds [43,

Theorem 7.48]

sup
w∈W

∣∣∣∣ 1

M
log2(1 + γpk(w))− Eh {log2(1 + γpk(w))}

∣∣∣∣→ 0, as M →∞ (1)

sup
w∈W

∣∣∣∣ 1

M
log2(1 + γck,i(w))− Eh

{
log2(1 + γck,i(w))

}∣∣∣∣→ 0, as M →∞ (2)

where W is the feasible set for the beamforming vectors, determined with P Tr(w) and given by

the objective function of problem (P2) and it is convex and compact given the aforementioned

assumptions are full filled. That is (1) and (2) indicate that the SAA estimate of the rates

converges to the ergodic rate uniformly on the compact set W with probability one as the

sample size goes to infinity. By [43, Theorem 5.3], we conclude that the set of optimal solutions

of problem P3(M) converges uniformly to the the set of optimal solutions of problem P2 with

probability one as M →∞, which completes the proof.

B. Proof of Theorem 2

The proof follows similar steps as used in [48, Theorem 2]. First, we note that the problem

P3(M) has a convex objective function, but the feasible set is non convex as the functions in

constraints (48c) and (48d) are non convex. In each iteration r of Algorithm 1, we solve the

following convex optimization problem P4. Let us define the objective function of problem P4

August 19, 2021 DRAFT



2

as Q(w). Moreover, we define ur = Υ(wr−1) and ρr = Φ(wr−1), where the mappings Υ(·)

and Φ(·) are given in (50) and (51), respectively. Note that all the auxiliary coefficients in

(52)-(57) are already defined in terms of ur and ρr. We note that the sequence {Q(wr)}∞r=0

is monotonically decreasing after each iteration and converges. This is because it is a convex

function in the variables, let Q̄ denotes the limit of this function. Due to the compactness of

the convex feasible set defined by the constraints (16c), (16d), the iterates {wr}∞r=0 must have

a cluster point, denoted as w̄. That is, it exists a subsequence {wr1}∞r1=J for some J > 0 which

converges to w̄. Since the functions Υ(·) and Φ(·) are continuous we have the following result

lim
r1→∞

{wr1 ,ur1 ,ρr1} = {w̄,Υ(w̄),Φ(w̄)} , {w̄, ū, ρ̄} . (3)

That is, {ū, ρ̄} is optimal when w = w̄. Now, we need to prove that the beamforming vectors

w̄ are optimal when {u,ρ} = {ū, ρ̄}. To see this, we note that the {wr1+1} is given as the

optimal solution of problem Pr1
4 . Hence, from the optimality of {wr1+1} and the monotonicity

of the objective function we conclude the following

Q(wr1+1) ≤ Q(wr1+1) ≤ Q(w), ∀w. (4)

By taking the limits of both sides of equation (4), we get

Q̄ = Q(w̄, ū, ρ̄) ≥ Q(w, ū, ρ̄), ∀w. (5)

Thus, w̄ must be the optimal solution to the problem P3(M) when {u,ρ} = {ū, ρ̄}, and we

already have shown that {ū, ρ̄} is the optimal solution to problem P3(M) when w = w̄. Based

on these observations we can easily show that {w̄, ū, ρ̄} is a KKT solution to the optimization

problem P3(M) by checking the KKT conditions. To this end, we have shown that any cluster

point of the iterates generated by Algorithm 1 converges to a KKT solution of the optimization

problem P3(M). Although the KKT points are not necessarily unique, the distance between any

sequence {wr,ur,ρr}∞r=0 and the KKT solution set goes to zero in the limit. This completes the

proof.
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