l\' frontiers

Supplementary Material
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1.1 Quantum Yield Measurement

The fluorescence quantum yields of the fluorophores were measured with a similar method to
previously reported (Yang et al., 2017; Yang et al., 2018; Ma et al., 2020). The fluorescence spectra in
the region of 900-1500 nm were measured by a spectrometer with a thermoelectrically cooled InGaAs
detector (HORIBA 1hr320) under an 808 nm diode laser excitation (RMPC lasers, 180 mW). During
emission measurements, one 850-nm short pass filter (Thorlabs) was used as the emission filter. The
obtained emission spectra were further corrected by the detector sensitivity profile and the absorbance
features of the filter. The fluorescence quantum yield was determined against the reference fluorophore
IR-FE with a known quantum yield of 3.1% (®st) in toluene, which was previously determined with
IR-26 of 0.050% as reference in dichloroethane. All samples were measured at 25 °C with optical
density (OD) below 0.1 at 808 nm. The intensity read out from the InGaAs camera was a spectrally
integrated total emission intensity in the 900-1400 nm region. Using the measured optical density (OD)
at 808 nm and spectrally integrated fluorescence intensity (F), the quantum yield of the test sample can

be calculated according to the following equation:

Fy Ay (7\) 77,2( F, 1 — 107 %Ps ™ n}Z{
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&4 and Fst are data of the IR-FE standard, @x and Fy are data of the studied sample. n is the refractive

index of solvent.

1.2 Density Functional Theory Calculations

To reduce the computational cost, side chains on the benzene units are replaced by methyloxy groups.
The ground-state (So) geometries of structure-simplified BGM6, BGP6 and BGO6 were firstly
optimized at the B3LYP/6-31G(d) level (Lee et al., 1988; Heyd et al., 2003) and then re-optimized at
the tuned-wB97XD*/6-31G(d) level. The corresponding range separation parameter (w, in Bohr™®) for
each molecule was optimally tuned and listed in Supplementary Table 1. The excited-state (Si1)
geometries of these molecules were optimized using the time dependent (TD)-tuned-wB97XD*/6-
31G(d) method (Runge and Gross, 1984). The HOMO and LUMO orbitals, absorption excitation
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energies of these molecules were obtained at the TD-tuned- ®B97XD*/6-31G(d) level based on their
optimized So geometries. The emission excitation energies of these molecules were calculated at the
TD-tuned-wB97XD*/6-31G(d) level based on their optimized S; geometries. The polarizable
continuum model (PCM) (Tomasi et al., 2005) was employed to take into account the effects of the

solvents. All the calculations were performed using the Gaussian 16 software.

1.3 Molecular Dynamic Simulations

For each molecule, the structure was optimized at the PCM(water)-B3LYP/6-311G** level (Lee et al.,
1988), and then restrained electrostatic potential (RESP) charges (Bayly et al., 1993) and the General
Amber Force Field (GAFF) (Wang et al., 2004) were assigned for the optimized structure. To remove
bad contacts before the simulation, 2000 steps of steepest descent followed by 8000 steps of conjugate
gradient energy minimizations were carried out. All bonds with hydrogen atoms were fixed using the
SHAKE algorithm (Ryckaert et al., 1977). The particle mesh Ewald method with an 8 A cutoff in real
space was used to calculate electrostatic interaction. A Langevin thermostat with a collision frequency
of 1.0 ps~* was used to regulate temperature. Isotropic pressure coupling with a relaxation time of 2
ps was used to maintain the pressure to 1 atm. All the MD simulations were performed by AMBER 18
program. The water molecules around the BBTD acceptor center in the effective contact distance (R =
6 A) are displayed as the explicit water model. The initial structure of fluorophore was immersed in
the center of a truncated octahedral box of TIP3P (Jorgensen et al., 1983) water molecules, and all of
the PEG atoms were no less than 8 A from the boundary of the water box. The relaxed structure was
then gently heated from 0 to 300 K in 50 ps and equilibrated for 50 ps with weak restraints on each
molecule, which was equilibrated for another 500 ps at constant pressure without restraint. Production

simulations were extended to 140 ns for each molecule and trajectories were saved every 2 ps.

1.4  Centrifugal Filtration of Fluorophores

Considering the large aggregation of as-prepared fluorophores can be removed using centrifugal filter,
fluorophores through filtration of 30, 50 and 100 kDa molecular weight cut-off (MWCOQO) are
intravenously injected to investigate the effect of fluorophores aggregation on excretion behavior. The
pass percentages of fluorophores through different filters are estimated with the optical density (OD)
values at the peak and summarized in Supplementary Table 3. Selected time points from video-rate

NIR-II imaging of mice in the supine positon after tail vein injection of as-prepared, 30 KDa and 100



KDa filtered BGMG6P are measured (Supplementary Figure S4-6). It is found that fluorescence signal
of liver can be detected for as-prepared BGMG6P treated mouse at ~900 s post-injection (p. i.). By
contrast, the florescence signal of liver is undetectable at ~200 s p.i. for mice with treatment of BGM6P
after both 30 and 100 kDa filtration. It can also be observed that mice treated with 30 and 100 kDa
filtered BGMG6P exhibit urine signal peak at 400 s p. i., two time faster of excretion than 800 s for
mouse treated with as-prepared BGM6P, and liver fluorescence intensity signal is counted with ca.
1000, 2500, 3500 at the time of urine signal peak for mice treated with 30, 100 kDa filtrated and as-
prepared BGMG6P, respectively (Supplementary Figure S7). These results demonstrate that
fluorophores after centrifugal filtration display superior renal excretion ability and less liver
accumulation than as-prepared fluorophores, suggesting fluorophores without large aggregation are
more favorable for renal clearance pathway.

2 Synthetic Procedures and Characterization Data for the Molecular Fluorophores

The synthesis of BGM6, BGP6 and BGO6 and their PEGylated compounds BGM6P, BGP6P and
BGOG6P was shown in Supplementary Scheme 1, and the PEGylated fluorophores were characterized
by size exclusion chromatography (SEC) (Supplementary Figure 1, Supplementary Table 2).
PEG1500 (weight average molecular weight, My = 1500 g/mol) was conjugated to afford fluorophores

water solubility.
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Supplementary Scheme 1. Synthetic routes of BGM6, BGP6 and BGO6 and their PEGylated
compounds BGM6P, BGP6P and BGOG6P.

The synthetic procedures of M1-M3 were similar to the reported procedures in our previous work
(Wan et al., 2018).

Compound M1 (yield 53%). *H NMR (500 MHz, CDCls), & (ppm) 7.19 (t, J = 6.5 Hz, 1H), 7.15 (d, J
=1.5Hz, 1H), 6.58 (d, J = 1.5 Hz, 2H), 6.30 (d, J = 1.5 Hz, 1H), 4.16 (m, 2H), 3.99 (m, 4H), 3.88 (m,
2H), 3.75 (m, 2H), 3.76 (m, 2H), 3.70 (m, 2H), 3.68 (m, 2H), 3.57 (m, 4H), 3.40 (m, 3H), 1.89 (m, 4H),
1.83 (m, 4H), 1.55 (m, 8H). *3C NMR (126 MHz, CDCls), & (ppm) 157.35, 156.11, 133.25, 128.65,
121.22, 113.07, 105.46, 97.85, 72.08, 70.19, 70.81, 70.72, 69.94, 69.30, 68.98, 59.18, 33.99, 32.80,
29.07, 27.94, 25.46. HRMS (ESI) calcd for C29H4506Br=BrS, ([M+H-+]) 681.1278, Found 681.1273.

Compound M2 (yield 51%). *H NMR (500 MHz, CDCls), § (ppm) 7.19 (s, 1H), 7.14 (d, J = 1.5 Hz,
1H), 6.87 (d, J = 1.5 Hz, 1H), 6.77 (s, 1H),6.27 (d, J = 1.5 Hz, 1H), 4.15 (m, 2H), 3.99 (m, 4H), 3.95
(m, 2H), 3.92 (m, 2H), 3.87 (m, 2H), 3.76 (m, 2H), 3.70 (m, 2H), 3.68 (m, 2H), 3.57 (m, 2H), 3.45 (m,
3H), 3.40 (m, 2H), 1.91 (m, 6H), 1.80 (m, 2H), 1.55 (m, 8H). 3C NMR (126 MHz, CDCls), & (ppm)
156.81, 153.15, 149.72, 138.12, 123.98, 117.12, 114.47, 114.11, 114.08, 98.32, 72.07, 70.93, 70.80,
70.72, 69.86, 69.47, 69.40, 68.53, 59.20, 34.01, 33.99, 32.83, 32.78, 31.09, 29.32, 28.08, 28.02, 25.56,
25.44. HRMS (ESI) calcd for C20H45s06Br=BrS, ([M+H-]) 681.1278, Found 681.1273.

Compound M3 (yield 64%). *H NMR (500 MHz, CDCls), § (ppm) 7.04 (d, J = 1.5 Hz, 1H), 6.89 (d, J
=15 Hz, 1H), 6.85 (d, J = 1.5 Hz, 1H), 6.83 (s, 1H),6.15 (d, J = 1.5 Hz, 1H), 4.14 (m, 2H), 4.04 (m,
2H), 3.98 (m, 2H), 3.85 (m, 2H), 3.83 (M, 2H), 3.74 (M, 4H), 3.70 (M, 2H), 3.66 (M, 2H), 3.64 (M, 4H),
3.40 (m, 2H), 1.91-1.81 (m, 8H), 1.54 (m, 8H). 3C NMR (126 MHz, CDCls), 5 (ppm) 157.45, 149.26,
149.14,142.93,127.80, 118.43,115.02, 114.07,111.61, 96.35, 72.04, 70.91, 70.77, 70.68, 69.79, 69.44,
69.20, 69.16, 59.14, 33.87, 32.84, 32.82, 29.22, 29.20, 28.04, 28.02, 25.38, 25.37. HRMS (ESI) calcd
for C29H4506Br=BrS, ([M+H+]) 681.1278, Found 681.1271.

The intermediates M4-M6 were prepared with the similar procedures as follow.

General procedures for M4-M6. To a solution of compound M1-M3 (680 mg, 1.0 mmol) in 60 mL
THF at -78 °C under protection gas atmosphere, n-BuLi (1.6 M in hexane, 0.69 mL, 1.1 mmol) was
added dropwise. After stirring at this temperature for another 1.5 h, tributyltin chloride (340 mg, 1.2
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mmol) was added to the solution. Then the reaction was slowly warmed to room temperature and stirred
overnight. After that, the mixture was poured into water and extracted twice with ethyl acetate, the
combined organic phase was dried with MgSO4 and evaporated in vacuo without further purification.

Product BGM6, BGP6 and BGOG6 were prepared with the similar procedures.

General procedures for BGM6, BGP6 and BGOG6. To a solution of the crude compound M4-M6 (1.1g,
about 1.12 mmol) and BBT-Br (157 mg, 0.45 mmol) in toluene (15 mL) under protection gas
atmosphere, Pd(PPhs).CI? (140 mg) was added. The mixture was stirred at 120 °C for 12 h. After
cooling to room temperature, the mixture was poured into water and extracted twice with ethyl acetate.
The organic phase was dried with MgSO4 and evaporated in vacuo. The crude material was purified
by silica gel column chromatography (PE/DCM = 4:1) to afford compound BGM6, BGP6 and BGO6
as dark green solid (yield ~45%).

Compound BGM6 (yield 43%). *H NMR (500 MHz, CDCls), § (ppm) 7.80 (s, 2H), 7.26-7.18 (m, 2H),
6.66 (d, J = 1.5 Hz, 2H), 4.36-4.33 (t, J = 6.5 Hz, 4H), 4.10-4.07 (m, 8H), 3.71-3.68 (M, 4H), 3.57-3.53
(m, 12H), 3.49-3.47 (m, 4H), 3.36-3.32 (m, 14H), 1.93-1.80 (m, 16H), 1.57-1.49 (m, 16H). 3C NMR
(126 MHz, CDCls), § (ppm) 157.29, 154.87, 153.08, 137.02, 128.69, 119.63, 114.75, 114.12, 112.83,
105.45, 72.00, 70.88, 70.79, 70.65, 70.61, 70.23, 69.19, 59.12, 33.96, 32.80, 29.22, 28.07, 25.66.
HRMS (ESI) calcd for C64H87012N4BrEBrS,, ([M+H+]) 1551.1890, Found 1551.1881.

Compound BGPS (yield 47%). 'H NMR (500 MHz, CDCls), & (ppm) 7.57 (s, 2H), 7.31 (s, 1H), 6.93-
6.90 (d, J = 1.5 Hz, 1H), 6.84-6.81 (m, 1H), 4.40-4.38 (t, J = 6.5 Hz, 2H), 4.10-4.07 (m, 2H), 4.01-3.99
(m, 2H), 3.71-3.69 (m, 2H), 3.58-3.53 (m, 6H), 3.49-3.46 (m, 4H), 3.37-3.32 (M, 5H), 1.94-1.82 (m,
8H), 1.57-1.49 (m, 8H). 3C NMR (126 MHz, CDCls), § (ppm) 155.73, 153.21, 152.98, 150.01,, 141.44,
123.81, 115.96, 115.21, 114.75, 114.04, 113.94, 72.05, 71.98, 71.05, 70.79, 70.65, 70.61, 70.16, 69.50,
68.61, 59.13, 34.02, 33.95, 32.83, 32.79, 29.38, 28.10, 26.83, 25.68, 25.48. HRMS (ESI) calcd for
C64H87012N4Br8BIS,, ([M+H-+]) 1551.1890, Found 1551.1884.

Compound BGO6 (yield 42%). 'H NMR (500 MHz, CDCls), § (ppm) 7.25 (d, J = 1.5 Hz, 1H), 7.20
(d, J = 1.7 Hz, 1H), 6.92-6.91 (d, J = 1.5 Hz, 1H), 4.41-4.39 (t, J = 6.5 Hz, 2H), 4.10-4.04 (m, 4H),
3.70-3.68 (m, 2H), 3.59-3.56 (m, 2H), 3.53 (m, 2H), 3.51-3.34 (m, 11H), 1.94-1.84 (m, 8H), 1.57 (m,
8H). 13C NMR (126 MHz, CDCls), & (ppm) 156.49, 152.82, 149.59, 149.27, 146.38, 127.53, 118.70,
113.82, 113.78, 113.46, 111.50, 71.96, 71.16, 70.78, 70.64, 70.60, 70.12, 69.28, 69.06, 59.12, 45.14,
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33.94, 32.84, 32.82, 29.25, 29.20, 28.06, 28.04, 25.41, 25.39. HRMS (ESI) calcd for
C64H87012N4Br8IBrS,, ([M+H+]) 1551.1890, Found 1551.1919.

Product BGM6P, BGP6P and BGOG6P were prepared with the similar procedures as follow.

General procedures for BGM6P, BGP6P and BGO6P. BGM6, BGP6 or BGO6 (84 mg, 0.054 mmol)
and sodium azide (50 mg, 0.75 mmol) were dissolved in DMF (10 mL), and the mixture was stirred
for 3 h at room temperature. Then a large amount of water was added until all solids were dissolved.
The reaction was extracted twice with ethyl acetate, the combined organic phase was dried with MgSO4
and evaporated in vacuum. The crude product was subjected to flash column chromatography on silica
gel to afford a dark green solid (69 mg, 0.052mmol). The dark green solid was dissolved in THF (5
mL) and copper (1) thiophene-2-carboxylate (CuTc) (5 mg), w-alkynyl-PEG-hydroxyl PEG1500 (Mn
= 1500 mg/mL) (150 mg, about 0.1 mol) and tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine
(TBTA) (3 mg) were added. The system was stirred at room temperature for 0.5 h, and then filtered
with diatomite, and the solution was evaporated in vacuum. The crude product was purified by thin
layer chromatography twice. First, ethyl acetate was used as an eluent and a small amount of impurities
would move to the top of the TLC plate, but other parts of product remained at the start point of the
TLC plate. Then DCM/MeOH (10:1-5:1) was used as an eluent successively, and the PEGylated
product could be separated from alkyne-PEG (yiled ~85%).

BGMG6P (yield 86%). SEC measured: Mn = 7191 g/mol, Mw = 7676 g/mol, PDI = 1.067.
BGP6P (yield 83%). SEC measured: Mn = 7523 g/mol, Mw = 8006 g/mol, PDI = 1.064.
BGOGP (yield 89%). SEC measured: Mn = 7486 g/mol, Mw = 7953 g/mol, PDI = 1.063.

3 Supplementary Figures and Tables

3.1 Supplementary Figures
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Supplementary Figure 1. Size-exclusion chromatography (SEC) analysis of the un-PEGylated and
PEGylated molecular fluorophores.

Supplementary Figure 2. Calculated HOMOs and LUMOs of the molecular fluorophores at the tuned-
®B97XD*/6-31G(d) level. The HOMO and LUMO energy levels are also presented in the figures. To
reduce the computational requirements, side chains on the benzene units are replaced by methyloxy

groups. Note that the LUMO levels are obtained by subtracting the optical gap from the HOMO levels.
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Supplementary Figure 3. Optimized ground-state (So) and first singlet excited state (S1) geometries
of the molecular fluorophores at the optimally tuned wB97XD*/6-31G(d) level. To reduce the

computational requirements, side chains on the fluorene units are replaced by methyloxy groups. The

dihedral angles are shown.




Supplementary Figure 4. Selected time points from video-rate NIR-II imaging of a mouse in the

supine positon after tail vein injection of as-prepared BGMG6P (Inject dose: OD=2, 200 uL, 50 ms
exposure time).

Supplementary Figure 5. Selected time points from video-rate NIR-II imaging of a mouse in the
supine positon after tail vein injection of 30 K filtered BGM6P.
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Supplementary Figure 6. Selected time points from video-rate NIR-II imaging of a mouse in the

supine positon after tail vein injection of 100 K filtered BGMG6P.
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Supplementary Figure 7. Bladder and liver signal of the mouse with an injection of 30 K filtered, 100

K filtered and as-prepared BGMG6P. Liver signal is ca. 1000, 2500, 3500 counts, respectively.
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Supplementary Figure 8. Selected time points from NIR-1I whole body imaging of mice in the supine

positon after tail vein injection of 30 K filtrated BGM6P, BGP6P and BGOGP, respectively.
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Supplementary Figure 9. NIR-II fluorescent signal intensity of liver (A), bladder (B) and skin (C)
regions for BGO6P, BGP6P and BGMG6P injected mouse at different time after injection. (D)
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Supplementary Figure 10. *H NMR spectrum of M1.
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Supplementary Figure 11. *3C NMR spectrum of M1.
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Supplementary Figure 13. *H NMR spectrum of BGM6.
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Supplementary Figure 14. 3C NMR spectrum of BGMS.
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Supplementary Figure 15. HR MASS spectrum of BGMB6.
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Supplementary Figure 16. *H NMR spectrum of M2.
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Positive:
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Supplementary Figure 18. HR MASS spectrum of M2.
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Supplementary Figure 19. *H NMR spectrum of BGPS.
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Supplementary Figure 20. 3C NMR spectrum of BGP6.
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Positive:
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Supplementary Figure 21. HR MASS spectrum of BGP6.
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Supplementary Figure 22. *H NMR spectrum of M3.

L€°62A
8752\
aN.mN//
ST°691
02694/
zo-sz 4
¥0°8%
zz 62
z8"zc
b8 Z¢g-
L8 eg’
b1 66~
0Z°69+
B 69\
6L 69—
mw.crumw
Lo
T6°0LY
v0-zL
SE 96—

190111

L0 BT

Z0"STT—_

Epr8TT—"

08°LZT—

€67 ThT—

PTG ~

9z 6pT—

SbTLET—

20

ppm

40 30 20 10

50

60

70

210 200 190 180 170 160 150 140 130 120 110 100 90 80

BiCgH, .0

s d HAL IMM_HLJ, . Hlu“‘_,m.m —

Supplementary Figure 23. 3C NMR spectrum of M3.
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Supplementary Figure 24. HR MASS spectrum of M3.
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Supplementary Figure 25. *H NMR spectrum of BGOS.
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Supplementary Figure 26. 3C NMR spectrum of BGOS6.
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Positive:
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Supplementary Figure 27. HR MASS spectrum of BGO6.
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Supplementary Table 1. Calculated first vertical So-S1 excitation energies (Eoz), first vertical S1-So
emission energies (E1o), electronic configurations determined at the TD-©wB97XD*/6-31G (d) level of
theory. ®The optimally tuned range-separated parameters included in the functionals. *Experimental
data.

Molecules o*? Eor (o)  fou Electronic E1o (A10) f10 A1 A10%
configuration
ev (nm) ev (hm) (nm) (nm)

BGM6  0.1182 1.62(764) 032 HOMO —  1.14(1092) 0.32 736 1047
LUMO 99%

BGP6 0.1182 1.59(780) 0.39 HOMO — 1.13(1094) 0.36 736 1060
LUMO 98%

BGO6 0.1187 1.59(781) 0.39 HOMO — 1.13(1093) 0.36 741 1060
LUMO 98%

Supplementary Table 2. Size-exclusion chromatography (SEC) analysis of the NIR-II molecular
fluorophores.

Fluorophores RV (mL) M (Daltons) M (Daltons) Mw/ Mp
BGMG6P 14.97 7191 7676 1.067
BGP6P 14.78 7523 8006 1.064
BGOG6P 14.85 7486 7953 1.063
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Supplementary Table 3. Pass percentage analysis of the fluorophores with different filters.

Filtration OD at peak Pass percentage (%)
BGMG6P No filtration 3.91 100.00
100k filtration 3.64 93.10
50k filtration 0.98 25.10
30k filtration 0.04 1.08
BGP6P No filtration 3.83 100.00
100k filtration 3.23 84.33
50k filtration 0.36 9.40
30k filtration 0.00 0.00
BGOG6P No filtration 3.77 100.00
100k filtration 2.32 61.53
50k filtration 0.14 3.66
30k filtration 0.00 0.00
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