AVA: A Financial Service Chatbot based on Deep Bidirectional Transformers

A. Appendix

All extended materials and source code related to this paper
are avaliable on https://github.com/cyberyu/
ava Our repo is composed of two parts: (1) Extended mate-
rials related to the main paper, and (2) Source code scripts.
To protect proprietary intellectual property, we cannot share
the question dataset and proprietary embeddings. We use
an alternative data set from Larson et al., “An Evaluation
Dataset for Intent Classification and Out-of-Scope Predic-
tion”, EMNLP-IJCNLP 2019, to demonstrate the usage of
code.

A.1. Additional Results for the Main Paper

Some extended experimental results about MC dropout and
optimization are presented on github.

A.1.1. HISTOGRAM OF UNCERTAINTIES BY DROPOUT
RATIOS

We compare histograms of standard deviations observed
from random samples of predictions. The left side contains
histograms generated by 381-class intent models trained for
10 epochs, with dropout ratio varied from 10 percent to 90
percent. The right side shows histograms generated by 381
class models trained for 30 epochs.

A.1.2. UNCERTAINTY COMPARISON BETWEEN
381-CLASS VS 5-CLASS

To understand how uncertainties change vs. the number
of classes in BERT, we train another intent classifier using
only Tier 1 labels. We compare uncertainty and accuracy
changes at different dropout rates between the original 381-
class problem and the new 5-class problem.

A.1.3. GRID SEARCH FOR OPTIMAL THRESHOLD ON
DROPOUT

Instead of using optimization, we use a grid search to find
optimal combinations of average probability threshold and
standard deviation threshold. The search space is set as a
100 x 100 grid on space [0,0] to [1,1], where thresholds vary
by step of 0.01 from O to 1. Applying thresholds to outputs
of BERT predictions give us classifications of relevance vs.
irrelevance questions, and using the same combination of
test and escalation questions we visualize the F1 score in
contour map shown on github repo.

A.1.4. OPTIMAL THRESHOLD LEARNING ON DROPOUT
381 CLASSES VS 5 CLASSES

Using the same optimization process mentioned in equation
(2) of the main paper, we compare the optimal results (also
CPU timing) learned from 381 classes vs. 5 classes.

A.1.5. SIMPLE ALGORITHM FOR SENTENCE
COMPLETION MODEL

When multiple OOVs occur in a sentence, in order to avoid
the computational burden using large beamsize to find the
optimal joint probabilities, we assume all candidate words
for OOVs are independent, and apply Algorithm 2 one by
one to correct the OOVs.

Algorithm 2 Auto-correction of Single OOV token. Using
MaskedLM function from Transformer AP, each masked position
has recommendations of top M candidate words W using their
corresponding probabilities P. Then, from these candidates, we
evaluate their Levenshtein distances to the OOV token, and select
the token with smallest distance as auto-corrected token.

procedure AUTO-CORRECT(< fy, .., tN >, i) »iis OOV index

1:
2 00V «— tj > set OOV token as MASK
3 t; « [MASK] > set OOV token as MASK
4 W, P « MaskedLM(ty, .., tN, M) > ranked top M candidates
5 for wj in W do > iterate top M candidates
6 dij = WordEditDistance(w;, oov)
7 end for
8 j = arg min ; djj > The candidate with shortest edit distance
9 ti=w /i > Autocorrect the oov token
10: return < fy, .., tny > » Return the autocompleted sentence

11: end procedure

A.2. Intent Classification Source Code
A.2.1. BERT EMBEDDINGS MODEL PRETRAINING

The jupyter notebook for pretraining embeddings is
at https://github.com/cyberyu/ava/blob/
master/scripts/notebooks/BERT_PRETRAIN_
Ava.ipynb. Our script is adapted from Denis An-
tyukhov’s blog “Pre-training BERT from scratch with cloud
TPU”. We set the VOC_SIZE to 32000, and use Sentence-
Piece tokenizer as approximation of Google’s WordPiece.
The learning rate is set to 2e-5, training batch size is 16,
training setps set to 1 million, MAX_SEQ_LENGTH set to
128, and MASKED_LM_PROB is set to 0.15.

To ensure the embeddings is training at the right architecture,
please make sure the bert_config.json file referred in the
script has the right numbers of hidden and attention layers.

A.2.2. BERT MODEL TRAINING AND EXPORTING

The jupyter notebook for BERT intent classification
model training, validation, prediciton and exporting
is at https://github.com/cyberyu/ava/
blob/master/scripts/notebooks/BERT_

run_classifier_Ava.ipynb. The main script
run_classifier_inmem.py is tweaked from the default
BERT script run_classifier.py, where a new function serv-
ing_input_fn(): is added. To export that model in the same
command once training is finished, the ’—do_export=true’


https://github.com/cyberyu/ava
https://github.com/cyberyu/ava
https://github.com/cyberyu/ava/blob/master/scripts/notebooks/BERT_PRETRAIN_Ava.ipynb
https://github.com/cyberyu/ava/blob/master/scripts/notebooks/BERT_PRETRAIN_Ava.ipynb
https://github.com/cyberyu/ava/blob/master/scripts/notebooks/BERT_PRETRAIN_Ava.ipynb
https://github.com/cyberyu/ava/blob/master/scripts/notebooks/BERT_run_classifier_Ava.ipynb
https://github.com/cyberyu/ava/blob/master/scripts/notebooks/BERT_run_classifier_Ava.ipynb
https://github.com/cyberyu/ava/blob/master/scripts/notebooks/BERT_run_classifier_Ava.ipynb

AVA: A Financial Service Chatbot based on Deep Bidirectional Transformers

need be set True, and the trained model will be exported to
directory specified in "—export_dir’ FLAG.

A.2.3. MODEL SERVING API SCRIPT

We create a jupyter notebook to demonstrate
how exported model can be served as in-memory
classifier for intent classification, located at
https://github.com/cyberyu/ava/scripts/
notebooks/inmemory_intent.ipynb. The script
will load the entire BERT graph in memory from exported
directory, keep them in memory and provide inference
results on new questions. Please notice that in “getSess()”
function, users need to specify the correct exported
directory, and the correct embeddings vocabulary path.

A.2.4. MODEL INFERENCE WITH DROPOUT SAMPLING

We provide a script that performs Monte Carlo dropout
inference using in-memory classifier. The script assumes
three groups of questions are saved in three separate files:
training.csv, test.csv, escalation.csv. Users need to specify
the number of random samples, and prediction probabilities
results are saved as corresponding pickle files. The script is
available at https://github.com/cyberyu/ava/
scripts/dropout_script.py

A.2.5. VISUALIZATION OF MODEL ACCURACY AND
UNCERTAINTY

The visualization notebook https://github.com/
cyberyu/ava/scripts/notebooks/BERT_
dropout_visualization. ipynb uses output pickle
files from the previous script to generate histogram
distribution figures and figures 4(b) and (c).

A.3. Threshold Optimization Source Code
A.3.1. THRESHOLD FOR ENTROPY

Optimization script finding best threshold for entropy
is available at https://github.com/cyberyu/
ava/blob/master/scripts/optimization/
optimize_entropy_threshold.py. The script
requires Python 3.6 and Gurobi 8.1.

A.3.2. THRESHOLD FOR MEAN PROBABILITY AND
STANDARD DEVIATION

Optimization script finding best mean probability thresh-
old and standard deviation threshold is available at
https://github.com/cyberyu/ava/blob/
master/scripts/optimization/optimize_
dropout_thresholds.py

A 4. Sentence Completion Source Code

The complete Sentence Completion RESTFUL API
code is in https://github.com/cyberyu/ava/
scripts/sentence_completion/serve.py.

The model depends on BertForMaskedLM func-
tion from Transformer package (ver 2.1.1) to gen-
erate token probabilities. =~ We use transformers-cli
(https://huggingface.co/transformers/
converting_ tensorflow_models.html) to con-
vert our early pretrained embeddings to PyTorch formats.
The input parameters for API are:

o Input sentence. The usage can be three cases:

— The input sentence can be noisy (containing mis-
spelled words) that require auto-correction. As
shown in the example, the input sentence has
some misspelled words.

— Alternatively, it can also be a masked sentence, in
the form of “Does it require [MASK] signature
for IRA signup”. [MASK] indicates the word
needs to be predicted. In this case, the predicted
words will not be matched back to input words.
Every MASKED word will have a separate output
of top M predict words. But the main output of
the completed sentence is still one (because it can
be combined with misspelled words and cause a
large search) .

— Alternatively, the sentence can be a complete sen-
tence, which only needs to be evaluated only for
Perplexity score. Notice the score is for the entire
sentence. The lower the score, the more usual the
sentence is.

e Beamsize: This determines how many alternative
choices the model needs to explore to complete
the sentence. We have three versions of functions,
predict_oov_vl, predict_.oov_v2 and predict_oov_v3.
When there are multiple [MASK] signs in a sentence,
and beamsize is larger than 100, v3 function is used
as independent correction of multiple OOVs. If beam-
size is smaller than 100, v2 is used as joint-probability
based correction. If a sentence has only one [MASK]
sign, vl (Algorithm 2 in Appendix) is used.

e Customized Vocabulary: The default vocabulary is the
encoding vocabulary when the bidirectional language
model was trained. Any words in the sentence that do
not occur in vocabulary will be treated as OOV, and
will be predicted and matched. If you want to avoid
predicting unwanted words, you can include them in
the customized vocabulary. For multiple words, com-
bine them with “—" and the algorithm will split them
into list. It is possible to turn off this customized vo-


https://github.com/cyberyu/ava/scripts/notebooks/inmemory_intent.ipynb
https://github.com/cyberyu/ava/scripts/notebooks/inmemory_intent.ipynb
https://github.com/cyberyu/ava/scripts/dropout_script.py
https://github.com/cyberyu/ava/scripts/dropout_script.py
https://github.com/cyberyu/ava/scripts/notebooks/BERT_dropout_visualization.ipynb
https://github.com/cyberyu/ava/scripts/notebooks/BERT_dropout_visualization.ipynb
https://github.com/cyberyu/ava/scripts/notebooks/BERT_dropout_visualization.ipynb
https://github.com/cyberyu/ava/blob/master/scripts/optimization/optimize_entropy_threshold.py
https://github.com/cyberyu/ava/blob/master/scripts/optimization/optimize_entropy_threshold.py
https://github.com/cyberyu/ava/blob/master/scripts/optimization/optimize_entropy_threshold.py
https://github.com/cyberyu/ava/blob/master/scripts/optimization/optimize_dropout_thresholds.py
https://github.com/cyberyu/ava/blob/master/scripts/optimization/optimize_dropout_thresholds.py
https://github.com/cyberyu/ava/blob/master/scripts/optimization/optimize_dropout_thresholds.py
https://github.com/cyberyu/ava/scripts/sentence_completion/serve.py
https://github.com/cyberyu/ava/scripts/sentence_completion/serve.py
https://huggingface.co/transformers/converting_tensorflow_models.html
https://huggingface.co/transformers/converting_tensorflow_models.html

AVA: A Financial Service Chatbot based on Deep Bidirectional Transformers

cabulary during runtime, which simply just put None
in the parameters.

e Ignore rule: Sometimes we expect the model to ignore
a range of words belonging to specific patterns, for
example, all words that are capitalized, all words that
start with numbers. They can be specified as ignore
rules using regular expressions to skip processing them
as OOV words. For example, expression "[A-Z]+” tells
the model to ignore all uppercase words, so it will not
treat ‘IRA’ as an OOV even it is not in the embeddings
vocabulary (because the embeddings are lowercased).
To turn this function off, use None as the parameter.

The model returns two values: the completed sentence, and
its perplexity score.

A.5. RASA Server Source Code

The proposed chatbot utilizes RASA’s open framework to
integrate RASA’s “chitchat” capability with our proposed
customized task-oriented models. To achieve this, we set
up an additional action endpoint server to handle dialogues
that trigger customized actions (sentence completion+intent
classification), which is specified in actions.py file. Dia-
logue management is handled by RASA’s Core dialogue
management models, where training data is specified in sto-
ries.md file. So, in RASA dialogue_model.py file run_core
function, the agent loads two components: nlu_interpreter
and action_endpoint.

The entire RASA project for chatbot is shared under
https://github.com/cyberyu/ava/intent_
bot. Please follow the github guidance in README file to
setup the backend process.

A.6. Microsoft Teams Setup

Our chatbot uses Microsoft Teams as front-end to connect to
RASA backend. We realize setting up MS Teams smoothly
is a non-trivial task, especially in enterprise controlled env-
iornment. So we shared detailed steps on Github repo.

A.7. Connect MS Teams to RASA

At RASA side, the main tweak to allow MS Team connec-
tion is at dialogue_model.py file. The BotFrameworkInput
library needs to be imported, and the correct app-id and
app_password specified in MS Teams setup should be as-
signed to initialize RASA InputChannel.


https://github.com/cyberyu/ava/intent_bot
https://github.com/cyberyu/ava/intent_bot

