Vehicle 100%	1975 WT	602	OSI	6+0	1975 AR	602	OSI	6+0	1650 WT	602	OSI	6+0
P-ATM		112	100	119#		112	101	116#		116#	98	118#
S1980												
Ρ-ΑΜΡΚα		108	101	114#		108	102	115#		119#	98	120#
T172												
P-mTOR		74*	68*	56*		69*	66*	60*		85*	96	83*
S2448												
P-mTOR		69*	68*	60 *		68*	71*	60*		77*	87*	76*
S2481												
P-ULK1		68*	63*	58*		63*	65*	53**		77*	81*	71*
S757												
P-ULK1		108	105	113#		106	99	118#		109	107	114#
S317												
P-PERK		118#	109	120#		117#	111	124#		114#	104	114#
1980			400	440"		440#	4.05	404 "		4470		400 //
P-elF2α		115#	109	116#		116#	105	121#		11/#	114	122#
S51			00*	701			0.0*	70*			07	07*
P-MEK1/2		93	83^	/6 [^]		93	82^	/6 [^]		92	97	8/^ 05*
P-AKI		91	81^	10*		94	80,	80,		95	90	85^
1308 D STAT2		02	02	0E *		02	02	01*		06	05	04
P-31A13		93	92	00		92	92	01		90	90	94
D-STAT5		80	88	82*		03	95	02		95	08	03
Y694		03	00	02		33	33	JZ		33	30	33
Beclin1		110	113#	116#		106	109	115#		111	103	115#
ATG5		109	111	117#		107	105	113#	 	116#	106	117#
P-ATG13		124#	126#	129#		118#	121#	126#		123#	115#	129#
S318												
GRP78		121#	119#	121#		115#	103#	116#		120#	111	122#
СНОР		114#	109	115#		110	102	113#		111	106	116#
PP1		116#	104	120#		119#	112	125#		119#	103	122#
NOXA		106	100	107		104	100	106		111	101	113#
PUMA		109	99	109		105	98	107		109	100	113#
FLIP-s		92	85*	84*		90	79*	75*		93	102	90
ERBB1		95	99	92		100	100	105		100	98	96
P-B1		94	73*	71*		93	76*	73*		71*	61*	58 *
ERBB2		98	100	98		101	102	92		95	94	91
P-B2		91	101	91		93	101	91		74*	97	68 *
ERBB3		97	101	100		101	101	101		100	100	100
P-B3		95	100	90		97	100	94		81*	96	76*
ERBB4		101	99	99		100	98	98		99	100	100
P-B4		94	102	93		100	97	94		75*	96	73*
p70 S6K		89	92	86*		102	99	91		87*	99	85*
1389		400	00			400	400	404		400	400	4.04
I OTAI		100	99	99		100	100	101		100	100	101
	I	I				I						

Supplemental Table 1. The impact of GZ17-6.02 and osimertinib on cell signaling in NSCLC cells (part 1). Cells were treated with vehicle control, GZ17-6.02 (2 μ M final curcumin), osimertinib (100 nM) or the drugs combined for 6h. Cells were fixed in place and immunostaining performed to determine protein expression and phosphorylation (n = 3 +/-SD) * p < 0.05 less than vehicle; # p < 0.05 greater than vehicle.

Vehicle	1975 WT	602	OSI	6+0	1975 AR	602	OSI	6+0	1650 WT	602	OSI	6+0
D-NE ₁₂ B		89	100	86*		83*	102	82*	•••	88	83*	80*
S536		00	100	00		00	102			00	00	00
P-SRC		83*	95	81*		86*	95	76*		86*	83*	80*
Y416		00		0.		00		10		00	00	00
P-SRC		105	102	107		107	103	109		107	105	107
Y527												
c-MET		100	101	101		102	103	103		100	98	99
P-c-MET		88	92	87*		89	93	85*		92	94	87*
c-KIT		98	98	98		102	102	102		93	100	93
P-c-KIT		91	99	91		98	109	118#		85*	92	79*
PDGFRβ		100	100	91		98	98	98		103	106	103
P-PDGFR6		89	89	86*		90	90	87*		83*	93	74*
P-JAK2		86*	83*	83*		81*	86*	81*		83*	86*	75*
ERK2		99	99	99		100	101	100		99	100	100
P-ERK1/2		87*	70*	61*¶		84*	85*	77*		87*	82*	76*
JNK1/2		100	101	99		100	100	100		100	104	100
P-JNK1/2		87	89	85*		89	89	82*		86*	91	85*
CD95		100	102	100		106	104	105		99	100	99
FAS-L		102	101	110		101	100	99		107	104	111
HDAC1		97	97	86*		101	101	100		98	99	97
HDAC2		79*	99	68**		73*	98	71*		75*	98	68*
HDAC3		79*	96	69*		77*	96	65**		84*	98	78*
HDAC4		88	93	80*		87	103	81*		85*	101	84*
HDAC5		97	100	94		93	100	93		92	99	87*
HDAC6		80*	105	69**		75*	103	60**		76*	98	74*
HDAC7		87	103	83*		88	100	79*		83*	99	83*
HDAC8		96	99	92		96	100	95		97	101	94
HDAC9		100	98	97		95	100	89		102	100	100
HDAC10		96	99	89		97	97	100		100	98	97
HDAC11		97	96	93		102	98	95		93	100	89
PD-L1		84*	99	74*		82*	99	74*		86*	97	80*
PD-L2		98	97	96		98	98	100		95	97	91
MHCA		114#	96	118#		120#	99	119#		112	103	116#
ODC		90	100	89		90	101	90		95	104	93
IDO1		89	99	85*		91	100	86*		92	100	87*
β-catenin		102	98	95		102	99	96		100	101	100
P-β-catenin		112	111	114*		111	109	114*		103	102	103
YAP		99	99	100		98	99	100		99	98	97
P-YAP S127		112	113#	116#		124#	124#	126#		116#	102	117#
TAZ		104	100	100		102	102	100		100	101	98
P-TAZ S89		112	114#	115#		119#	122#	124#		113#	101	116#

Supplemental Table 2. The impact of GZ17-6.02 and osimertinib on cell signaling in NSCLC cells (part 2). Cells were treated with vehicle control, GZ17-6.02 (2 μ M final curcumin), osimertinib (100 nM) or the drugs combined for 6h. Cells were fixed in place and immunostaining performed to determine protein expression and phosphorylation (n = 3 +/-SD) * p < 0.05 less than vehicle; ** p < 0.05 less than GZ17-6.02 alone; # p < 0.05 greater than vehicle.

Vehicle	1975	602	PEM	6+P	1975	602	PEM	6+P	1975	602	PEM	6+P
100%	WT				AR				OR			
P-ATM S1980		113#	108	117#		113#	108	116#		114#	109	118#
Ρ-ΑΜΡΚα Τ172		112	105	114#		111	107	117#		117#	112	118#
P-mTOR S2448		86*	96	85*		84*	95	82*		88	94	81*
P-mTOR S2481		78*	91	75*		81*	83*	78*		79*	92	75*
P-ULK1 S757		85*	91	82*		89	95	82*		89	96	82*
P-ULK1 S317		108	105	114#		110	105	115#		112	103	120#
P-PERK T980		112	103	116#		114*	102	118#		118#	101	122#
P-elF2α S51		112	103	118#		111	103	115#		110	101	117#
P-AKT T308		84*	87*	79*		87*	88	84*		83*	87*	79*
P-STAT3 Y705		86*	88	86*		92	95	82*		82*	88	80*
P-STAT5 Y694		89	91	85*		93	94	85*		82*	87*	80*
Beclin1		115#	112	117#		112	111	118#		115#	111	120#
ATG5		115#	109	117#		112	107	117#		115#	110	119#
P-ATG13 S318		112	104	117#		114#	105	118#		115#	106	120#
GRP78		124#	112	130#		120#	109	126#		127#	115#	132#
СНОР		115#	107	117#		112	104	116#		114#	107	119#
PP1		111	109	113#		108	104	110		109	105	111
ERBB1		100	101	98		100	101	100		100	99	100
P-B1		85*	88	75*		87*	93	78*		94	88	84*
ERBB2		100	101	101		100	100	100		99	100	100
P-B2		88	96	75*		86*	97	73*		88	92	85*
ERBB3		99	99	99		99	99	100		100	101	100
P-B3		89	95	85*		91	97	80*		90	93	86*
ERBB4		100	100	100		100	100	101		100	100	100
P-B4		100	100	100		86*	96	83*		86*	95	76*
p70 S6K		100	101	102		100	100	100		100	101	100
p70 S6K T389		91	99	81*		89	97	76*		89	98	78*
P-NFκB S536		87*	85*	83*		88	98	87*		83*	92	80*
P-SRC Y416		95	94	94		86*	92	85*		92	90	86*
P-SRC Y527		105	109	108		107	109	113#		107	112	113#
c-MET		100	100	100		103	100	102		99	100	101
P-c-MET		94	94	90		93	102	93		84*	88	82*
c-KIT		99	99	100		100	101	100		100	101	102
P-c-KIT		85*	94	83*		89	88	82*		89	90	81*
PDGFRβ		101	100	100		98	100	100		99	100	100
P-PDGFRβ		85*	90	82*		82*	84*	80*		81*	98	79*
JAK2		101	102	101		99	100	100		98	98	99
P-JAK2		94	91	89		93	87*	87*		95	89	89
ERK2		100	99	100		98	99	99		100	100	101
P-ERK1/2		86*	95	85*		78*	98	78*		83*	96	80*
CD95		97	100	100		101	101	100		101	100	100
FAS-L		104	108	113#		103	108	113#		105	110	116#

Supplemental Table 3. The impact of GZ17-6.02 and pemetrexed on cell signaling in NSCLC

cells. Cells were treated with vehicle control, GZ17-6.02 (2 μ M final curcumin), pemetrexed (500 nM) or the drugs combined for 6h. Cells were fixed in place and immunostaining performed to determine protein expression and phosphorylation (n = 3 +/-SD) * p < 0.05 less than vehicle; # p < 0.05 greater than vehicle.

	VEH	602	PEM	6+P
H1975 WT				
FLIP-s	100	97	101	93
BCL-XL	100	90	87*	81*
MCL-1	100	85*	81*	80*
ERK2	100	100	100	100
H1975 OR				
FLIP-s	100	99	98	98
BCL-XL	100	93	90	85*
MCL-1	100	89*	84*	82*
ERK2	100	101	101	101
H1650 WT				
FLIP-s	100	91	92	88
BCL-XL	100	87*	84*	83*
MCL-1	100	86*	83*	80 *
ERK2	100	100	100	101
H1650 OR				
FLIP-s	100	97	93	91
BCL-XL	100	87*	85*	83*
MCL-1	100	90	86*	83*
ERK2	100	101	100	100

Supplemental Table 4. The impact of GZ17-6.02 and pemetrexed on the expression of

cytoprotective proteins in NSCLC cells. Cells were treated with vehicle control, GZ17-6.02 (2 μ M final curcumin), pemetrexed (500 nM) or the drugs combined for 6h. Cells were fixed in place and immunostaining performed to determine protein expression (n = 3 +/-SD) * p < 0.05 less than vehicle.

1975WT	602	PEM	6+P	1975OR	602	PEM	6+P
1	94	99	86*		96	97	97
2	92	93	86*		90	93	84*
3	91	100	84*		93	98	85*
4	100	100	101		97	100	98
5	99	98	94		94	95	90
6	82*	88	81*		84*	93	83*
7	94	98	94		95	98	97
8	100	101	102		100	101	100
9	101	99	100		96	97	96
10	102	102	98		100	100	102
11	101	101	101		98	101	100
ERK2	100	100	100		102	101	102

Supplemental Table 5. The impact of GZ17-6.02 and pemetrexed on the expression of histone deacetylase (HDAC) proteins in NSCLC cells. Cells were treated with vehicle control, GZ17-6.02 (2 μ M final curcumin), pemetrexed (500 nM) or the drugs combined for 6h. Cells were fixed in place and immunostaining performed to determine protein expression (n = 3 +/-SD) * p < 0.05 less than vehicle.

A549

H460

H1437

LLC

	602	PEM	6+P	602	PEM	6+P	602	PEM	6+P	602	PEM	6+P
PD-L1	64*	85*	65*	66*	87*	69*	78*	85*	72*	68*	90	65*
PD-L2	89	102	99	97	104	93	97	102	97	95	102	94
MHCA	126#	111#	126#	125#	112	128#	125#	112	129#	123#	103	127#
ID01	97	98	95	85*	95	86*	94	95	92	87	97	89
ODC	90	98	87*	105	103	91	93	96	85*	95	92	91
ERK2	100	99	99	102	100	102	99	99	99	100	98	99

	HCC827ER				H661			H1573			H1299			
	602	PEM	6+P	602	PEM	6+P	602	PEM	6+P	602	PEM	6+P		
PD-L1	82*	84*	78*	69*	80*	66*	79*	89	75*	75*	84*	72*		
PD-L2	100	100	102	98	102	99	98	104	98	98	100	98		
MHCA	130#	123#	145##	124#	113#	132#	125#	111	125#	124#	109	123#		
IDO1	69*	78*	70*	75*	83*	74*	82*	92	84*	87*	95	86*		
ODC	86*	76*	75*	85*	84*	82*	98	87*	75**	100	99	93		
ERK2	99	100	100	101	100	100	101	102	101	100	100	100		

1975WT

1975AR

1975OR

1650WT

1650OR

	602	PEM	6+P												
PD-L1	72*	86*	71*	84*	89	73**	90	96	82*	74*	85*	71*	86*	94	84*
PD-L2	99	102	100	100	101	96	100	99	97	98	101	98	101	99	98
MHCA	127#	110	125#	128#	108	136#	115#	112	122#	124#	109	123#	116#	107	118#
IDO1	84*	86*	82*	80*	91	78*	91	93	83*	87*	88	86*	90	100	86*
ODC	89	89	80*	81*	80*	84*	89	93	82*	100	91	93	88	89	85*
ERK2	100	100	101	100	100	99	101	100	100	100	99	100	99	101	100

Supplemental Table 6. The impact of GZ17-6.02 and pemetrexed on the expression of immunoregulatory proteins in NSCLC cells. Cells were treated with vehicle control, GZ17-6.02 (2 μ M final curcumin), pemetrexed (500 nM) or the drugs combined for 6h. Cells were fixed in place and immunostaining performed to determine protein expression (n = 3 +/-SD) * p < 0.05 less than vehicle; # p < 0.05 greater than vehicle.

Figure Legends

Supplemental Figure 1. Representative control data showing siRNA protein expression knock down or protein over-expression. Cells were transfected with plasmids to express the indicated proteins or with siRNA molecules to knock down protein expression. Twenty-four h after transfection cells were fixed in place. In cell immunostaining was performed to detect the levels of each protein and in parallel as a loading control, the total expression of invariant ERK2 (n = 3 + -SD).

Supplemental Figure 2. Resistance to ERBB1 inhibitors is associated with a reduced ability to form autophagosomes. A. H1975 (wild type sensitive and afatinib-resistant (AR)) were transfected to express LC3-GFP-RFP and subsequently treated with vehicle, osimertinib (100 nM), GZ17-6.02 (2 µM curcumin final) or the drugs in combination for 4h and 8h. The number of intense staining GFP+ and RFP+ punctae were determined randomly in at least 50 cells and the mean number of punctae per cell determined (n = 3 + -SD). # p < 0.05 greater than GZ17-6.02 value; ¶ p < 0.05 greater than corresponding value after 4h; $\sim p < 0.05$ less than corresponding value in wild type sensitive cells. **B.** Erlotinib-resistant HCC827 cells were transfected with siRNA molecules to knock down protein levels or with plasmids to express activated forms of mTOR or STAT3 and then subsequently treated with vehicle or [osimertinib (100 nM) + GZ17-6.02 (2 µM curcumin final)] in combination for 4h and 8h. The number of intense staining GFP+ and RFP+ punctae were determined randomly in at least 50 cells and the mean number of punctae per cell determined (n = 3 +/-SD). $\P p < 0.05$ greater than corresponding value after 4h; * p < 0.05 less than corresponding values in siSCR/CMV transfected cells. C. Afatinib-resistant H1975 cells were transfected with siRNA molecules to knock down protein levels or with plasmids to express activated forms of mTOR or STAT3 and then subsequently treated with vehicle or [osimertinib (100 nM) + GZ17-6.02 (2 µM curcumin final)] in combination for 4h and 8h. The number of intense staining GFP+ and RFP+ punctae were determined randomly in at least 50 cells and the mean number of punctae per cell determined (n = 3 +/-SD). $\P p < 0.05$ greater than corresponding value after 4h; * p < 0.05 less than corresponding values in siSCR/CMV transfected cells.

Supplemental Figure 3. The killing of afatinib-resistant NSCLC cells requires [BAX + BAK] and autophagosome formation and is significantly reduced by expression of activated AKT, activated mTOR or activated MEK1. Afatinib-resistant H1975 cells were transfected with siRNA molecules to knock down protein expression or with plasmids to express regulatory proteins. Subsequently, cells were treated with vehicle or [osimertinib (100 nM) + GZ17-6.02 (2 μ M curcumin final)] in combination for 24h. Cell viability was determined by trypan blue exclusion (n = 3 +/-SD). * p < 0.05 less than corresponding siSCR/CMV value; ¶ p < 0.05 less than corresponding values in all other conditions; § p < 0.05 greater than corresponding values in all other manipulated conditions.

Supplemental Figure 4. GZ17-6.02 weakly alters GSH levels and the GSH:GSSG ratio in NSCLC

cells. Cells were treated with vehicle control or with GZ17-6.02 (2 μ M or 4 μ M curcumin final concentration). Cells were isolated 3h-48h afterwards and the total levels of GSH expressed as a percentage of vehicle control at each time point and the ratio of GSH to GSSG determined using a kit purchased from Promega. (n = 3 +/-SD) * p < 0.05 less than vehicle control value.

Supplemental Figure 5. In erlotinib-resistant HCC827 cells signaling by ATM enhances autophagosome formation whereas signaling from mTOR suppresses this event. Erlotinib-resistant HCC827 were transfected with siRNA molecules to knock down protein levels or with plasmids to express activated forms of mTOR or STAT3 and then subsequently treated with vehicle or [pemetrexed (500 nM) + GZ17-6.02 (2 μ M curcumin final)] in combination for 4h and 8h. The number of intense staining GFP+ and RFP+ punctae were determined randomly in at least 50 cells and the mean number of punctae per cell determined (n = 3 +/-SD). ¶ p < 0.05 greater than corresponding value after 4h; * p < 0.05 less than corresponding values in siSCR/CMV transfected cells; ∞ p < 0.05 less than values in sielF2 α , siAMPK α and caSTAT3.

Supplemental Figure 1

Supplemental Figure 3

Supplemental Figure 4

Supplemental Figure 5

