## Stochastic model of the adaptive immune response predicts disease severity and captures enhanced cross-reactivity in natural dengue infections

Hung D. Nguyen<sup>1,2</sup>\*, Sidhartha Chaudhury<sup>3</sup>, Adam T. Waickman<sup>4</sup>, Heather Friberg<sup>5</sup>, Jeffrey R. Currier<sup>5</sup>, Anders Wallqvist<sup>1</sup>\*

<sup>1</sup>Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States;

<sup>2</sup>Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States;

<sup>3</sup>Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States;

<sup>4</sup>Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America

<sup>5</sup>Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.

\*(HDN) hnguyen@bhsai.org

\*(AW) sven.a.wallqvist.civ@mail.mil

## Supplemental Data

| Serotype | Epitope | Sequence |      |      |              |              |
|----------|---------|----------|------|------|--------------|--------------|
| 1        | PrM     | aaaa     | aaaa | aaaa | aaaa         | aaaa         |
| 1        | FL      | bbbb     | bbbb | bbbb | bbbb         | bbbb         |
| 1        | DIII    | сссс     | сссс | cccc | сссс         | сссс         |
| 1        | hinge   | dddd     | dddd | dddd | dddd         | dddd         |
| 2        | PrM     | aaaa     | aaaa | aaaa | aaaa         | aaaa         |
| 2        | FL      | bbbb     | bbbb | bbbb | bbbb         | bbb <b>c</b> |
| 2        | DIII    | сссс     | сссс | cccc | сссс         | dddd         |
| 2        | Hinge   | dddd     | dddd | dddd | ddd <b>a</b> | aaaa         |
| 3        | PrM     | aaaa     | aaaa | aaaa | aaaa         | aaaa         |
| 3        | FL      | bbbb     | bbbb | bbbb | bbbb         | bbb <b>d</b> |
| 3        | DIII    | cccc     | cccc | cccc | cccc         | aaaa         |
| 3        | hinge   | dddd     | dddd | dddd | ddd <b>b</b> | bbbb         |
| 4        | PrM     | aaaa     | aaaa | aaaa | aaaa         | aaaa         |
| 4        | FL      | bbbb     | bbbb | bbbb | bbbb         | bbb <b>a</b> |
| 4        | DIII    | сссс     | cccc | cccc | cccc         | bbbb         |
| 4        | hinge   | dddd     | dddd | dddd | ddd <b>c</b> | cccc         |

| Table S1: | Sequences | and paramet | ter values for | each epitor | be of each serotype |
|-----------|-----------|-------------|----------------|-------------|---------------------|
|           | 1         | 1           |                |             | 21                  |

| Model parameter                 | Symbol          | Value                     |
|---------------------------------|-----------------|---------------------------|
| Simulation conditions           |                 |                           |
| Virus dose                      |                 | 10 <sup>4</sup> copies/ml |
| Virus parameters                |                 | •                         |
| Serotypes                       |                 | 4                         |
| Epitopes                        |                 | 4                         |
| Epitope PrM                     |                 |                           |
| Immunogenicity                  | γ               | 0.85                      |
| Clearance                       | ρ               | 0.1                       |
| Antigenic distance              |                 | 0                         |
| Epitope FL                      |                 |                           |
| Immunogenicity                  | γ               | 1.50                      |
| Clearance                       | ρ               | 1.0                       |
| Antigenic distance              |                 | 1                         |
| Epitope DIII                    |                 |                           |
| Immunogenicity                  | γ               | 1.15                      |
| Clearance                       | ρ               | 1.0                       |
| Antigenic distance              |                 | 4                         |
| Epitope hinge                   |                 |                           |
| Immunogenicity                  | γ               | 1.50                      |
| Clearance                       | ρ               | 1.0                       |
| Antigenic distance              |                 | 5                         |
| Virus formation rate            | kv              | 6.2 ml/(copies x d)       |
| Virus decay rate                | gv              | (8.0 h) <sup>-1</sup>     |
| B cell parameters               |                 |                           |
| B cell enhancement factor       | ε <sub>B</sub>  | 10                        |
| Ab enhancement factor           | ε <sub>Ab</sub> | 2.5                       |
| Naïve B cell formation rate*    | k <sub>N</sub>  | (R h) <sup>-1</sup>       |
| Naïve B cell stimulation        | $\sigma_{N}$    | $(1 d)^{-1}$              |
| GC B cell stimulation (base)    | $\sigma_{base}$ | (8 h) <sup>-1</sup>       |
| GC B cell stimulation (maximum) | $\sigma_{max}$  | (15 min) <sup>-1</sup>    |
| GC B cell replication rate      | r               | (8 h) <sup>-1</sup>       |
| Mutation probability            | μ               | 0.10                      |
| Differentiation probability     | δ               | 0.10                      |
| Memory cell stimulation         | $\sigma_{M}$    | $(1 d)^{-1}$              |

Table S2: Parameter values for the immune system model

|   | Ab production                                    | $\mathbf{k}_{Ab}$ | 1.0                                  |
|---|--------------------------------------------------|-------------------|--------------------------------------|
|   | Naïve B cell decay rate                          | g <sub>N</sub>    | $(4.5 \text{ d})^{-1}$               |
|   | GC B cell decay rate (base)                      | g <sub>B</sub>    | $(4.5 \text{ d})^{-1}$               |
|   | Plasma cell decay rate                           | g <sub>P</sub>    | $(3 d)^{-1}$                         |
|   | Ab decay rate                                    | g <sub>Ab</sub>   | $(10 \text{ d})^{-1}$                |
| Т | cell parameters                                  |                   |                                      |
|   | CD4 <sup>+</sup> T cell formation rate*          | k <sub>T1</sub>   | R copies x (ml x d) <sup>-1</sup>    |
|   | CD4 <sup>+</sup> T cell decay rate               | k <sub>T2</sub>   | $(4.5 \text{ d})^{-1}$               |
|   | CD8 <sup>+</sup> T cell formation rate*          | k <sub>T3</sub>   | R copies x (ml x d) <sup>-1</sup>    |
|   | CD8 <sup>+</sup> T cell decay rate               | k <sub>T4</sub>   | $(4.5 \text{ d})^{-1}$               |
|   | CD4 <sup>+</sup> T cell activation rate          | k <sub>T5</sub>   | 1200 ml x (copies x h) <sup>-1</sup> |
|   | CD4 <sup>+</sup> T cell differentiation rate     | k <sub>T6</sub>   | (15 h) <sup>-1</sup>                 |
|   | Memory CD4 <sup>+</sup> T cell formation rate    | k <sub>T7</sub>   | (15 h) <sup>-1</sup>                 |
|   | Activated CD4 <sup>+</sup> T cell decay rate     | k <sub>T8</sub>   | $(4.5 \text{ d})^{-1}$               |
|   | Memory CD4 <sup>+</sup> T cell reactivation rate | k <sub>T9</sub>   | 2400 ml x (copies x h) <sup>-1</sup> |
|   | CD8 <sup>+</sup> T cell activation rate          | k <sub>T10</sub>  | 8 ml x (copies x h) <sup>-1</sup>    |
|   | CD8 <sup>+</sup> -based clearance rate           | k <sub>T11</sub>  | 0.000025 ml x (copies x d)-1         |
|   | CD8 <sup>+</sup> T cell differentiation rate     | k <sub>T12</sub>  | (180 h) <sup>-1</sup>                |
|   | Activated CD8 <sup>+</sup> T cell decay rate     | k <sub>T13</sub>  | $(4.5 \text{ d})^{-1}$               |

\*R: the rate constant corresponds to either naïve B cell, CD4+, or CD8+ concentration that was randomly chosen for every simulation from a non-normal distribution of a healthy population of 6-12 years old children.

**Figure S1:** Simulation conditions for heterotypic and homotypic infections, each set is constructed from 10,000 independent simulations





**Figure S2:** Affinity of germinal center B cells, memory B cells, plasma cells and antibodies from primary and secondary heterotypic infections as a function of time.

**Figure S3:** (A) Correlation between secondary viral peak and lymphocyte, (B) k-means clustering for disease classification, each of the four cluster is represented by a different color, the centroid of each cluster is represented as an orange dot. Each horizontal line represents a boundary value of secondary viral peak separating every two clusters.



**Figure S4:** Profile of recalled memory, plasma, and antibody plus fresh naïve B cells before secondary infections



**Figure S5:** Correlation between disease severity (secondary viral peak), secondary antibody response, recalled memory, primary antibody response and primary viral peak. All data are plotted using log scales.

