
Barciś et al. Information Distribution in Multi-Robot Systems

Appendices

A MONTE CARLO TREE SEARCH
Monte Carlo tree search (MCTS) (Coulom 2006; Kocsis and Szepesvári 2006) is a heuristic decision
algorithm based on Monte Carlo method. It is widely used in the design of artificial intelligence, for
instance, in order to play games. In fact, the method was first introduced to play Go (Coulom 2006)
and since then almost dominated the field (Cazenave et al. 2019). Perhaps the most remarkable program
utilizing this method is AlphaGo developed by DeepMind Technologies (formerly Google Deepmind),
which was the first computer program to beat a professional Go player (Corera 2016). The method shown
its applicability also in other problems, like playing nondeterministic video games (Pepels et al. 2014),
planning (Mansley et al. 2011), and the problem of information distribution in MRS (Best et al. 2018).

MCTS is based on classic Monte Carlo methods, where the object of study (e.g., a continuous field) is
randomly sampled in order to estimate some properties of this object. In the case of MCTS the object
of study is a decision process and it is being randomly sampled by traversing a tree where each node
represents a decision.

A.1 Base of operation

A

B C

D E

m1

m2

m3

m4

drop send

drop send

Figure 1. Example of the
selection step. Node D was
eventually selected, which
represents a state in which
message m1 is sent, m2 is
dropped and the decision about
the other messages is not yet
made.

The following description explains the generic base of operation of
the basic version of MCTS algorithm. The description is intertwined
with an example that presents how this algorithm can be used in order
to solve the problem of information distribution in MRS.

The MCTS algorithm starts with a tree consisting of a single root
node. This node represents the state where none of the decisions are
made.

EXAMPLE. Let us assume we have a set of 4 messages:
{m1,m2,m3,m4} and we need to decide which ones of them are worth
sending. We need to make 4 decisions: for each message we should
decide if it should be sent or dropped. This state is represented by the
root node.

The method involves running a number of simulations. Each
simulation involves testing a different set of options for each decision
and examining the outcomes. The more simulations, the better the
estimation.

Then, for each simulation the algorithm performs four steps:
Selection, Expansion, Simulation, and Backpropagation. The steps
are described in the following subsections and summarized in pseudocode in algorithm 1. Additionally in
section A.2 we provide references to the Python source code used in our experiments.
A.1.1 Selection

We start from a root node and traverse the tree down until a leaf node is reached. A leaf node is a node
without any children. For each node we choose the child to go to based on the UCT formula (given in
Eq. 3). The selection step is described with pseudocode in line 8 of algorithm 1 and an example of this step
is presented in fig. 1.

Frontiers 1



Barciś et al.

A.1.2 Expansion

A

B C

D

F G

E

m1

m2

m3

m4

drop send

drop

drop send

send

Figure 2. Example of the
expansion step. Node D is
being expanded and nodes F
and G are the newly created
children nodes.

If in the leaf node there are still some unresolved decisions (e.g.,
messages for which we did not decide if they should be sent or not), in
the expansion step we choose one of them and create as many children
as there are options for the considered decision. In principle the decision
could be chosen at random, but usually some heuristic is utilized to first
consider decisions that are more significant. In our implementations
the decisions (i.e., messages) are ordered by generation time to assure
deterministic outcomes.

Then, one of the newly created children is chosen randomly and
considered in the next step. We will call this chosen child the expanded
child.

The pseudocode for this step is provided in line 13 of algorithm 1.

EXAMPLE. This example is visualized in fig. 2. Let us assume we are
in a leaf node D. There are still two messages for which the decision
was not made: m3 and m4 generated at, respectively, times 3 s and 4 s.
Message m3 is generated earlier, so we will consider options related to
it. We can either send it or not. Hence, we create two children nodes — one representing a situation when
m3 is sent (G), the other when it is not (F ). In both of these children the decision regarding message m4 is
still unknown.

A.1.3 Simulation
The goal of this step is to estimate the value of the expanded child form the previous step. In classic

MCTS at this point all of the unresolved decisions will be made randomly. Then, the resulting state would
have to be evaluated which would result in a numerical value being assigned to it (for instance, 1 for a won
game and 0 for a lost game).

However, often the set of decisions might be big and hence even performing them randomly might be
computationally intensive. An alternative approach to this step is to asses the value of a given state without
considering future decisions. This assessment could be done, for instance, by utilizing domain-specific
expert knowledge or be based on machine learning.

This step is presented in line 21 of algorithm 1.

EXAMPLE. Let us assume node F was chosen as the expanded child. We can utilize some evaluation
method in order to assess the situation in which message m1 is sent and messages m2 and m3 are dropped.
The method could, for instance, assume that bigger messages are more useful. As a result a numerical
score should be assigned to node F .

The evaluation model utilized in our implementation is briefly summarized in Section 2.2 of the paper.

A.1.4 Backpropagation
Executing the simulation step provided a new information about the expanded node. This information

needs to be propagated to all its ancestors in order to improve their estimated values. The ancestors of node
F are marked in fig. 3 and the pseudocode of this procedure starts in line 23 of algorithm 1.

Information Distribution in Multi-Robot Systems: Generic, Utility-Aware Optimization Middleware 2



Barciś et al.

A

B C

D

F G

E

m1

m2

m3

m4

drop send

drop

drop send

send

Figure 3. Example of the
backpropagation step. All nodes
that should be updated are
marked with red color.

In order to make the final decision, we start from a root node and then
always go to the child that was visited the most times. When the child
that represents the decision we are interested in is reached, we have the
result. This procedure is described with pseudocode in algorithm 2.

A.2 Implementation
In order to use MCTS in our experiments we have utilized a free

and open-source Python implementation available on Github1. We
have forked it and ported to Cython2 in order to improve performance.
Additionally, we changed the selection step to be deterministic in order
to make our experiments reproducible.

1 https://github.com/ImparaAI/monte-carlo-tree-search
2 https://github.com/zeroos/monte-carlo-tree-search

Frontiers 3

 https://github.com/ImparaAI/monte-carlo-tree-search 
 https://github.com/zeroos/monte-carlo-tree-search 


Barciś et al.

Algorithm 1 The MCTS algorithm. The main procedure starts in line 28.
1: class Node
2: Node parent
3: Node[] children
4: bool expanded := False
5: Decision[] unresolved decisions

. e.g., a set of messages to decide on
6: int visits := 0
7: float value := 0

8: function SELECT(tree root)
9: Node node := tree root

10: while node.expanded do
11: node := child of node with the highest UCT score
12: return node

13: function EXPAND(node)
14: decision := choose one of the unresolved decisions in node
15: option := choose one of the options for decision

. e.g., drop a message
16: expanded child := create a child representing option
17: node.children.APPEND(expanded child)
18: if all options for decision were considered then
19: node.expanded := True
20: return expanded child

21: function SIMULATE(node)
22: return estimated value of node

23: function BACKPROPAGATE(node, value)
24: node.value + = value
25: node.visits + = 1
26: if node is not tree root then
27: BACKPROPAGATE(node.parent, value)

28: function MCTS(decisions)
29: Node tree root
30: tree root.unresolved decisions := decisions
31: while insufficient number of simulations is performed do
32: Node node := SELECT(tree root)
33: Node expanded child := EXPAND(node)
34: float value := SIMULATE(expanded child)
35: BACKPROPAGATE(expanded child, value)

Algorithm 2 Procedure that allows us to make a decision based on a tree constructed using MCTS
simulations.

1: function DECIDE(node, decision)
2: best child := the most visited child of node
3: if node represents decision then
4: return a result of decision in best child
5: else
6: return DECIDE(child node, decision)

Information Distribution in Multi-Robot Systems: Generic, Utility-Aware Optimization Middleware 4



Barciś et al.

B DERIVATION OF EQUATIONS FROM SECTION 3.2.1
F (i) is a function computing number of nodes at the i-th level of the
tree. k is a number of messages generated in a window. Only r − 1 messages can be sent in one window.
We number the tree starting with level 0 (i.e., in Figure 2 message m1 is at level 0, m2 at level 1, etc.). This
means that level k represents the decision about k messages.

Then,

F (i) =

{
2i −

∑i
j=r

(i
j

)
, for i ≤ k

2F (i− 1)−
(k−1
r−1

)
, for i > k.

(1)

The case i > k is a recursive function, so it is not too useful. Let us try to expand it:

F (i) = 2F (i− 1)−
(
k − 1

r − 1

)
=

= 2

(
2F (i− 2)−

(
k − 1

r − 1

))
−
(
k − 1

r − 1

)
=

= 22F (i− 2)− (2 + 1)

(
k − 1

r − 1

)
=

= 2i−kF (k)−

i−k−1∑
j=0

2j

(k − 1

r − 1

)
=

= 2i−kF (k)−
(
2i−k − 1

)(k − 1

r − 1

)
=

= 2i−k

2k −
k∑

j=r

(
k

j

)− (2i−k − 1
)(k − 1

r − 1

)
=

= 2i − 2i−k
k∑

j=r

(
k

j

)
−
(
2i−k − 1

)(k − 1

r − 1

)
.

The result from above was given in the main text of this paper. Next, we stated that when r ≈ k
2 the

number of nodes is approximately 2i−1. Because this is only an approximation, in order to simplify
calculations, we consider only even k. The order of magnitude of the obtained result is not affected by this

Frontiers 5



Barciś et al.

assumption. We expand the result above for r ≈ k
2 :

F (i) = 2i − 2i−k
k∑

j=r

(
k

j

)
−
(
2i−k − 1

)(k − 1

r − 1

)
=

= 2i − 2i−k
k∑

j=k
2

(
k

j

)
−
(
2i−k − 1

)(k − 1

r − 1

)
=

= 2i − 2i−k2k−1 −
(
2i−k − 1

)(k − 1

r − 1

)
=

= 2i−1 −
(
2i−k − 1

)(k − 1

r − 1

)
< 2i−1

Next we try to find out what will happen if the number of messages that can be sent is small compared to
k:

F (i) = 2i − 2i−k
k∑

j=r

(
k

j

)
−
(
2i−k − 1

)(k − 1

r − 1

)
=

= 2i − 2i−k

2k −
r−1∑
j=0

(
k

j

)− (2i−k − 1
)(k − 1

r − 1

)
=

= 2i − 2i + 2i−k
r−1∑
j=0

(
k

j

)
−
(
2i−k − 1

)(k − 1

r − 1

)
=

= 2i−k
r−1∑
j=0

(
k

j

)
−
(
2i−k − 1

)(k − 1

r − 1

)

by applying the binomial theorem we can limit it to:

F (i) ≤ 2i−k(1 + k)r−2 −
(
2i−k − 1

)(k − 1

r − 1

)
< 2i−k(1 + k)r−2

Hence, if the number of messages that can be sent tends to 0 (only a few messages can be sent), the number
of nodes tends to being lower than 2i−k.

REFERENCES

Best, Graeme, Michael Forrai, Ramgopal Mettu, and Robert Fitch (2018) “Planning-Aware Communication
for Decentralised Multi-Robot Coordination”. In: Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA) pp. 1050–1057.

Cazenave, Tristan, Abdallah Saffidine, and Nathan Sturtevant, eds. (2019) Computer Games. Springer.
Corera, Gordon (2016) “Google Achieves AI ’breakthrough’ at Go”. In: BBC News.

Information Distribution in Multi-Robot Systems: Generic, Utility-Aware Optimization Middleware 6



Barciś et al.

Coulom, Rémi (2006) “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search”. In: Proc.
Computers and Games. Springer-Verlag.

Kocsis, Levente and Csaba Szepesvári (2006) “Bandit Based Monte-Carlo Planning”. In: Machine Learning:
ECML ed. by Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, pp. 282–293.

Mansley, Chris, Ari Weinstein, and Michael L. Littman (2011) “Sample-Based Planning for Continuous
Action Markov Decision Processes”. In: Proc. Int’l Conf. on Automated Planning and Scheduling (ICAPS)
ICAPS’11. Freiburg, Germany: AAAI Press, pp. 335–338.

Pepels, Tom, Mark H. M. Winands, and Marc Lanctot (2014) “Real-Time Monte Carlo Tree Search in Ms
Pac-Man”. In: IEEE Trans. Comput. Intell. AI Games 6.3, pp. 245–257.

Frontiers 7


	Monte Carlo tree search
	Base of operation
	Selection
	Expansion
	Simulation
	Backpropagation

	Implementation

	derivation of equations from section 3.2.1

