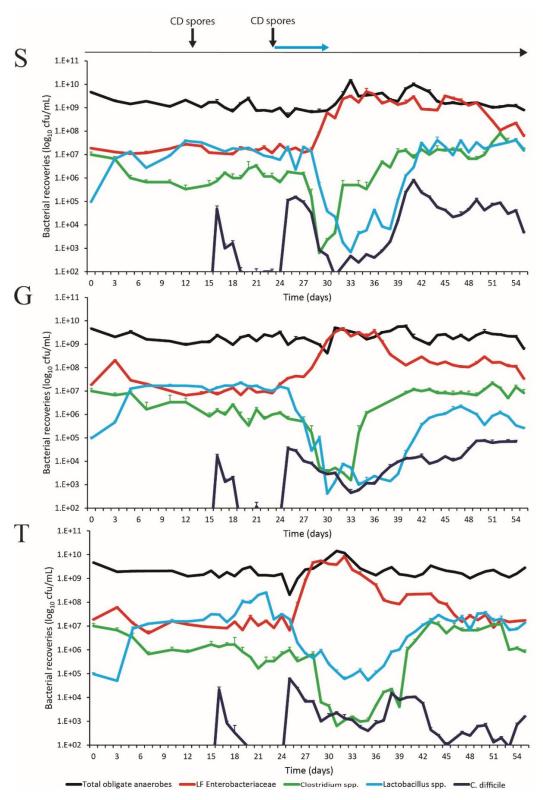
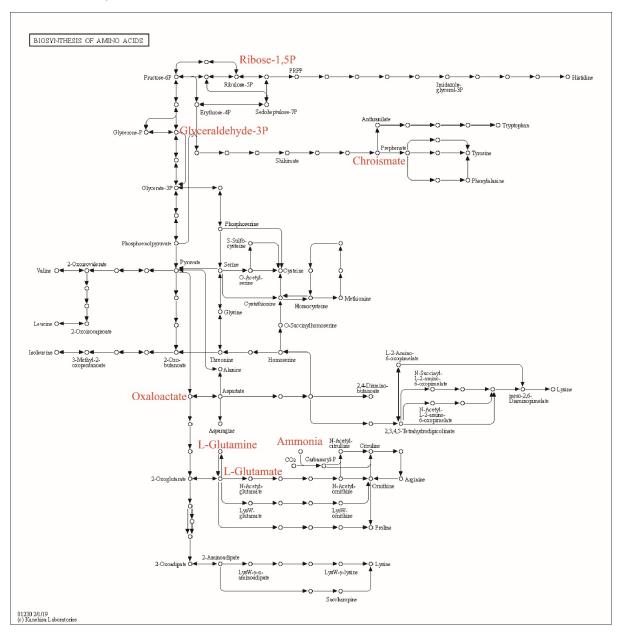
Trehalose-induced remodelling of the human microbiota affects *Clostridioides difficile* infection outcome in an *in vitro* colonic model: a pilot study

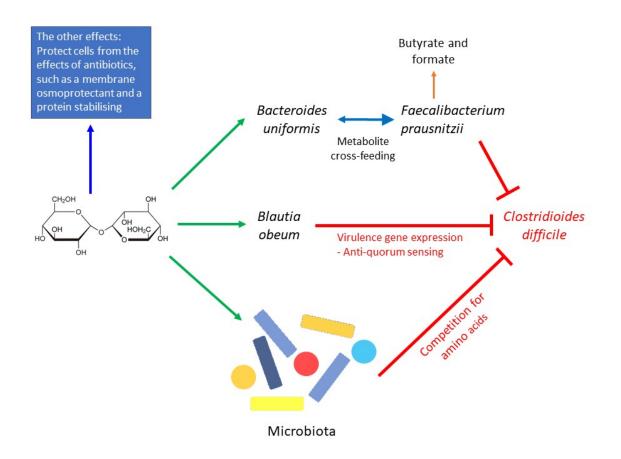
| Supplementary Table 1. Comparison of bacterial families from the donors and the fa | aecal |
|------------------------------------------------------------------------------------|-------|
| slurry                                                                             |       |


| <u>,</u>                      | Abundance (%) |         |         |         |         |            |
|-------------------------------|---------------|---------|---------|---------|---------|------------|
| Bacterial family              | Slurry        | Donor A | Donor B | Donor C | Donor D | Donor<br>E |
| Methanobacteriaceae           | 0.042         | 0.041   | 0.035   | 0.111   | 0.003   | 0.000      |
| Actinomycetaceae              | 0.006         | 0.000   | 0.001   | 0.017   | 0.000   | 0.007      |
| Bifidobacteriaceae            | 6.525         | 5.504   | 5.701   | 4.932   | 0.024   | 15.795     |
| Coriobacteriaceae             | 1.387         | 1.744   | 1.527   | 0.292   | 0.041   | 3.713      |
| Bacteroidales                 | 7.509         | 11.808  | 11.848  | 0.000   | 0.000   | 0.001      |
| Barnesiellaceae               | 0.050         | 0.037   | 0.035   | 0.031   | 0.000   | 0.098      |
| Odoribacteraceae              | 0.033         | 0.009   | 0.012   | 0.099   | 0.000   | 0.057      |
| Paraprevotellaceae            | 0.955         | 1.531   | 1.283   | 0.000   | 0.000   | 0.000      |
| Bacteroidaceae                | 12.905        | 7.875   | 8.530   | 12.540  | 20.431  | 13.921     |
| Porphyromonadaceae            | 0.660         | 0.423   | 0.471   | 0.664   | 0.050   | 1.653      |
| Prevotellaceae                | 0.693         | 1.105   | 0.953   | 0.000   | 0.000   | 0.000      |
| Rikenellaceae                 | 1.689         | 2.437   | 1.939   | 5.256   | 0.473   | 0.205      |
| Muribaculaceae                | 0.006         | 0.000   | 0.000   | 0.144   | 0.000   | 0.000      |
| Lactobacillaceae              | 1.510         | 0.003   | 0.004   | 0.003   | 9.777   | 0.000      |
| Streptococcaceae              | 0.108         | 0.067   | 0.075   | 0.274   | 0.067   | 0.204      |
| Turicibacteraceae             | 0.152         | 0.170   | 0.202   | 0.074   | 0.000   | 0.001      |
| Clostridiales                 | 10.576        | 13.343  | 14.081  | 18.764  | 6.648   | 11.586     |
| Christensenellaceae           | 0.942         | 1.379   | 1.459   | 2.986   | 0.000   | 0.001      |
| Clostridiaceae                | 3.998         | 4.984   | 4.872   | 4.056   | 0.338   | 0.912      |
| Eubacteriaceae                | 0.012         | 0.000   | 0.000   | 0.086   | 0.000   | 0.000      |
| Lachnospiraceae               | 13.547        | 10.156  | 10.459  | 1.789   | 20.529  | 18.324     |
| Peptococcaceae                | 0.265         | 0.487   | 0.508   | 0.000   | 0.000   | 0.000      |
| Peptostreptococcaceae         | 0.037         | 0.049   | 0.032   | 0.048   | 0.000   | 0.001      |
| Ruminococcaceae               | 23.302        | 29.027  | 27.642  | 24.854  | 17.570  | 26.237     |
| Veillonellaceae               | 2.158         | 2.847   | 2.822   | 0.888   | 2.216   | 1.655      |
| Erysipelotrichaceae           | 1.422         | 1.251   | 1.392   | 0.331   | 1.850   | 2.492      |
| Victivallaceae                | 0.443         | 1.002   | 1.344   | 0.000   | 0.000   | 0.001      |
| Unknown Family - RF32         | 0.482         | 0.720   | 0.523   | 3.605   | 0.373   | 0.027      |
| Alcaligenaceae                | 0.912         | 0.597   | 0.631   | 0.703   | 1.100   | 2.532      |
| Desulfovibrionaceae           | 0.370         | 0.669   | 0.749   | 0.096   | 0.024   | 0.445      |
| Enterobacteriaceae            | 4.729         | 0.039   | 0.068   | 0.309   | 16.911  | 0.041      |
| Pasteurellaceae               | 0.017         | 0.061   | 0.065   | 0.115   | 0.001   | 0.032      |
| Anaeroplasmataceae            | 0.161         | 0.396   | 0.520   | 0.000   | 0.000   | 0.000      |
| Unknown Family - RF39         | 0.012         | 0.020   | 0.018   | 0.000   | 0.000   | 0.000      |
| Unknown Family -<br>ML615J-28 | 0.105         | 0.000   | 0.000   | 3.686   | 0.000   | 0.006      |
| Verrucomicrobiaceae           | 2.283         | 0.220   | 0.200   | 13.247  | 1.574   | 0.051      |

**Supplementary Table 2.** Glucose and trehalose concentrations from model G (glucose supplemented), model T (trehalose supplemented), and model S (saline supplemented) (vessels 1-3 for each model). File name: Supplemental Table 2 sugar concentrations.


**Supplementary Table 3.** Day 38 KEGG pathway analysis from model G (glucose supplemented), model T (trehalose supplemented), and model S (saline supplemented) (vessel 3 for each model). Data shown are KEGG pathway assigned reads from four technical replicates for each model. File name: Supplementary Table 3 KEGG pathway.

**Supplementary Table 4.** Fold change ratios of significantly different metabolomic pathways and cell surface components between models G and S versus model T. The individual metabolomic pathways and cell surface components listed here were used to populate **Figure 6**.


**Supplementary Figure 1.** Recovery of bacterial populations from vessel 3 of model S, (S), model G, (G) and model T (T). The bacterial populations enumerated were, total obligate anaerobic bacteria (black lines), lactose-fermenting *Enterobacteriaceae* (red lines), *Clostridium* spp. (green lines), *Lactobacillus* spp. (blue lines), and *C. difficile* total counts (indigo lines). Results expressed as mean  $\pm$  SD of three technical replicates. Horizontal blue arrow represents the period of clindamycin dosing to all gut models.



**Supplementary Figure 2.** Biosynthesis of amino acids (KEGG pathway Ko01230), with metabolic compounds produced from pathways that are most abundant in both model G and model S (CDI induction model) shown in red.



Supplementary Figure 3. Putative mechanisms of trehalose-induced protection against *C. difficile* infection.



## Supplementary methods

## Enumeration of endogenous bacteria

Models were sampled for culture profiling of key intestinal microbiota populations using selective and non-selective agars described in **Supplementary Table 4**. Populations of total bacteria, *Clostridium* spp. lactose-fermenting Enterobacteriaceae, *Enterococcus* spp., *Bacteroides* spp., *Bifidobacterium* spp., *Lactobacillus* spp., *C. difficile* total viable cells and *C. difficile* spores. *C. difficile* spores were isolated by treating 0.5 mL of gut model fluid with 0.5 mL of 96% ethanol. The samples were incubated at room temperature for 1 h, serially diluted to 10–3 in peptone water, and 20  $\mu$ L of each sample dilution was plated in triplicate onto supplemented Braziers CCEY agar (**Supplementary Table 3**). Plates were incubated anaerobically for 48 h and distinctive colonies were enumerated and identified based on colony morphology and Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) identification. Each bacterial population was measured in triplicate (three technical replicates of a single biological replicate) in vessels 2 and 3. The limit of detection for either total viable counts or spores were 1.2 or 1.5, respectively, log<sub>10</sub> cfu/mL.

Supplementary Table 4. Target populations and agar composition for bacterial enumeration.

| Target populations                                | Agar                                                                                                 | Supplements                                                                                                              |                |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Total anaerobes and total <i>Clostridium</i> spp. | Fastidious anaerobe agar                                                                             | 5% horse blood                                                                                                           | 37°C, anerobic |  |
| Bifidobacterium spp.                              | 42.5 g/L Columbia agar, and 5 g/L agar technical                                                     | 0.5 g/L cysteine HCl, 5 g/L glucose                                                                                      | 37°C, anerobic |  |
| Bacteroides spp.                                  | Bacteroides bile aesculin agar                                                                       | 5mg/L haemin, 10 μL/L vitamin K,<br>7.5 mg/L vancomycin, 1 mg/L<br>penicillin, 75 mg/L kanamycin and<br>10 mg/L colistin | 37°C, anerobic |  |
| Lactobacillus spp.                                | 52.2 g/L MRS broth and 20 g/L agar<br>technical 0.5 g/L cysteine hydrocloride, 20<br>mg/L vancomycin |                                                                                                                          | 37°C, anerobic |  |
| Total facultative anaerobes                       | Nutrient agar                                                                                        | N/A                                                                                                                      | 37°C, aerobic  |  |
| Lactose fermenting<br>Enterobacteriaceae          | MaConkey's agar                                                                                      | N/A                                                                                                                      | 37°C, aerobic  |  |
| Enterococcus spp.                                 | Kanamycin aesculin azide agar                                                                        | 10 mg/L nalidixic acid, 10 mg/L aztreonam, and 20 mg/L kanamycin                                                         | 37°C, aerobic  |  |
| Total spores (following alcohol shock for 1 hour) | Fastidious anaerobe agar                                                                             | 5% horse blood                                                                                                           | 37°C, anerobic |  |
| C. difficile total viable cells                   | <i>difficile</i> total viable cells Braziers CCEY agar                                               |                                                                                                                          | 37°C, anerobic |  |
| C. difficile spores                               | Braziers CCEY agar                                                                                   | 5 mg/L lysozyme, and 2% lysed horse blood                                                                                | 37°C, anerobic |  |

Supplementary Table 5. Ion chromatography conditions used to detect glucose and trehalose

Eluent Buffer

| Time<br>(min) | Flow<br>(ml/min) | A%   | В%   | С%   |           |
|---------------|------------------|------|------|------|-----------|
| -10           | 1                | 86.8 | 13.2 | 0.0  |           |
| 0             | 1                | 86.8 | 13.2 | 0.0  |           |
| 15            | 1                | 86.8 | 13.2 | 0.0  | ן         |
| 25            | 1                | 67.0 | 0.0  | 33.0 | Linear gi |
| 30            | 1                | 67.0 | 0.0  | 33.0 |           |

A: Water, B; 300 mM NaOH, C; 300 mM NaOH/1,500 mM sodium acetate

radient