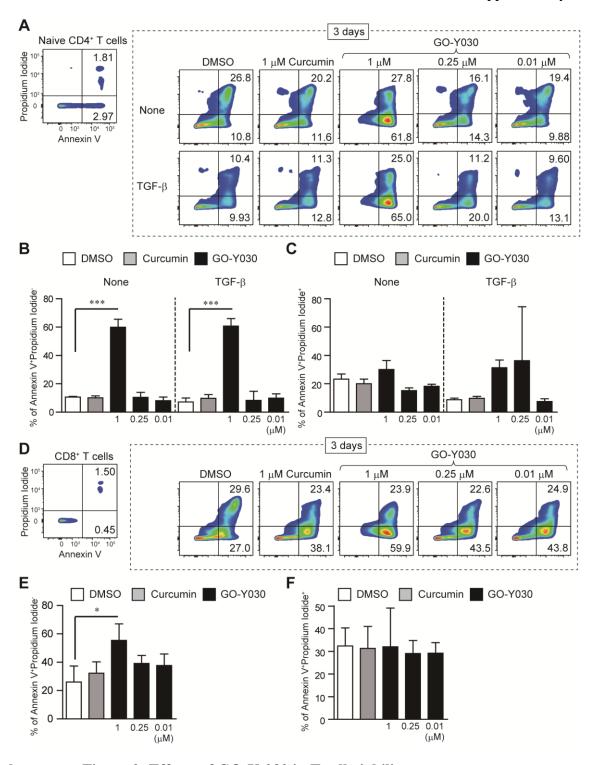
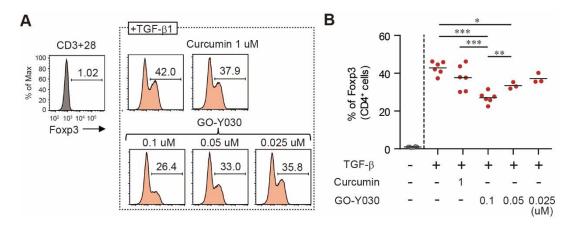

Interleukin-10	Forward	5'-CCCATTCCTCGTCACGATCTC-3'
	Reverse	5'-TCAGACTGGTTTGGGATAGGTTT-3'
TGF-β1	Forward	5'-CTCCCGTGGCTTCTAGTGC-3'
	Reverse	5'-GCCTTAGTTTGGACAGGATCTG-3'
GAPDH	Forward	5'-CCAGGTTGTCTCCTGCGACTT-3'
	Reverse	5'-CCTGTTGCTGTAGCCGTATTCA-3'
Foxp3-promoter	Forward	5'-TTCCTCCCGCTCTCTGACTCT-3
	Reverse	5'-AAGCGCCAGTTGTGTACAAATATC-3'
Foxp3-CNS1	Forward	5'-GTTTTGTGTTTTAAGTCTTTTGCACTTG-3'
	Reverse	5'-CAGTAAATGGAAAAATGAAGCCATA-3'
(For Taqman)	11010100	Cat#
Hprt1		Mm00446968_m1
Foxp3		Mm00475162_m1
Tgfb1		Mm00441724_m1
II10		Mm01288386_m1
Tnf		Mm00443258_m1
Tgfbr1		Mm00436964_m1
Tgfbr2		Mm03024091_m1
Smad6		Mm00484738_m1
Smad7		Mm00484742 m1
Rel		Mm01239661_m1
Tbx1		 Mm00448949_m1
Rorc		Mm01261022_m1
Nfkb1		Mm00446968_m1
Nfkb2		Mm00476361_m1
Ikbkb		Mm01222247_m1
Jun		Mm00495062_s1
II2ra		Mm01340213_m1
II2rb		Mm00434268_m1
Smad2		Mm00487530_m1
Smad3		Mm00489637_m1
Smad4		Mm03023996_m1
Cd3e		Mm01179194_m1
Icos		Mm00497600_m1
Nfkbiz		Mm00600522_m1
Cd44		Mm01277161_m1
Stat5a		Mm03053818_s1
Stat5b		Mm0083989_m1
Jak1		Mm00600614_m1
Hdac4		Mm01299552_m1
Ifng		Mm01168134_m1
II2		Mm00434256_m1
II5		Mm00439646_m1
II13		Mm00434204_m1
Inha		Mm00439683_m1
Rorc		Mm01261022_m1
Batf		Mm00456061 m1
Stat3		Mm00456961_m1

Supplementary Material

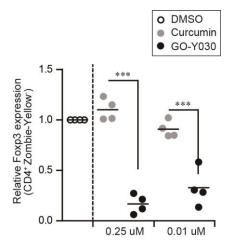

Myd88	Mm00440338_m1
Мус	Mm00487803_m1
Hk1	Mm00439344_m1
Hk2	Mm00443385_m1
Socs1	Mm00782550_s1
Socs3	Mm00545913_s1
Slc2a1	Mm00441480_m1
Slc2a3	Mm00441483_m1
Runx1	Mm01213404_m1
Runx3	Mm00490666_m1
Tcf12	Mm00441699_m1
Cd274	Mm03048248_m1
Rara	Mm01296312_m1
Rora	Mm01173766_m1

Supplementary Table 1: Primers List

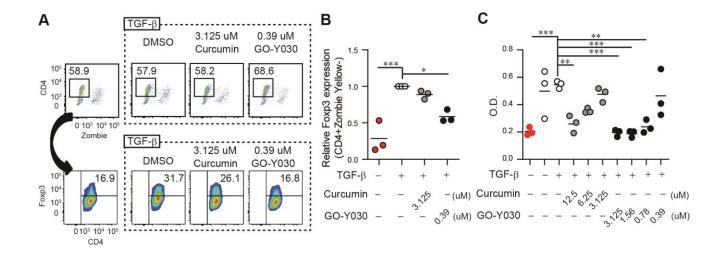
Supplementary Figure 1: Naive CD4⁺T cells from C57/BL6 mice cultured in each concentration of GO-Y-030.


(A, B) Representative SSC and FSC FACS analysis at five independent experiments. Purified naïve $\text{CD4}^+\text{T}$ cells cultured for three days, and then gated live cell population according to SSC and FSC. Statistical analyses were performed in each concentration between Curcumin and GO-Y030, and 2 ng/mL TGF- β versus all.

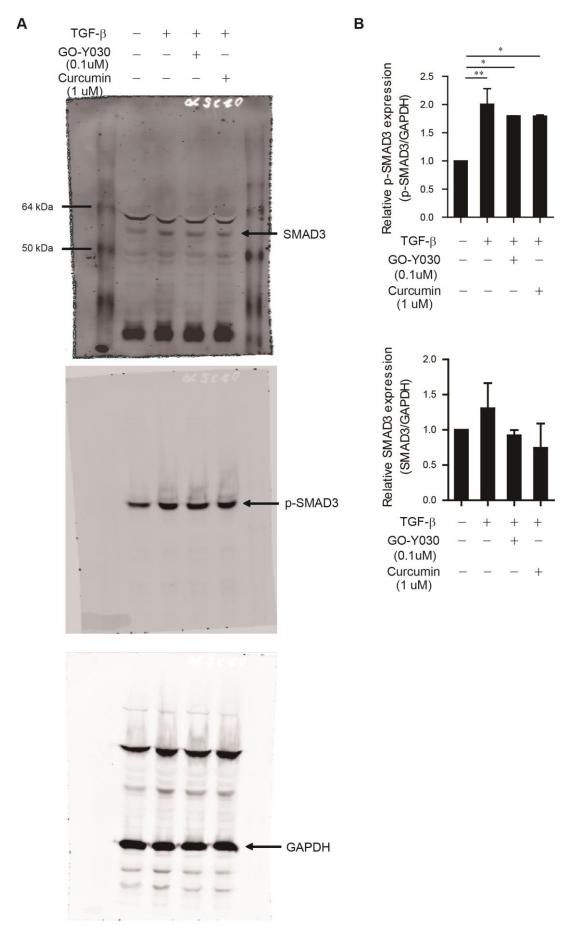
Supplementary Figure 2: Effects of GO-Y-030 in T cell viability.


(A) Representative Annexin V and Propidium Iodide FACS analyses at three independent experiments. Purified naïve CD4⁺ T cells cultured for three days, and then gated CD4⁺ cell population. (B, C) Statistic analyses were performed in each concentration between Curcumin and GO-Y030 versus DMSO control. One-way analysis of variance (ANOVA) with post-hoc Tukey's multiple comparisons test employed. (D) Representative Annexin V and Propidium Iodide FACS

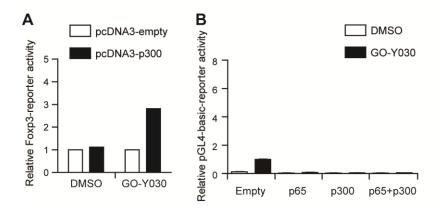
analyses at three independent experiments. Purified naïve CD8⁺ T cells cultured for three days, and then gated CD8⁺ cell population. (**E**, **F**) Statistic analyses were performed in each concentration between Curcumin and GO-Y030 versus DMSO control. One-way ANOVA with post-hoc Tukey's multiple comparisons test employed.


Supplementary Figure 3: GO-Y030 prevent TGF-β induced Foxp3⁺Tregs generation

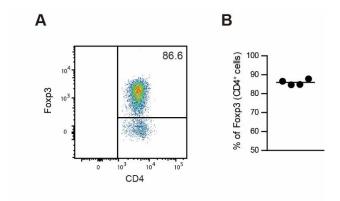
(A, B) Frequency of Foxp3 $^+$ Tregs in total CD4 $^+$ cells. Splenic naïve CD4 $^+$ T cells were cultured in the presence or absence of 2 ng/mL TGF- β , 1 μ M curcumin, or 0.1-0.025 uM GO-Y030 for three days. One-way analysis of variance (ANOVA) with post-hoc Tukey's multiple comparisons test employed.


Supplementary Figure 4: Relative Foxp3⁺Tregs in CD4⁺Zombie Yellow T cells.

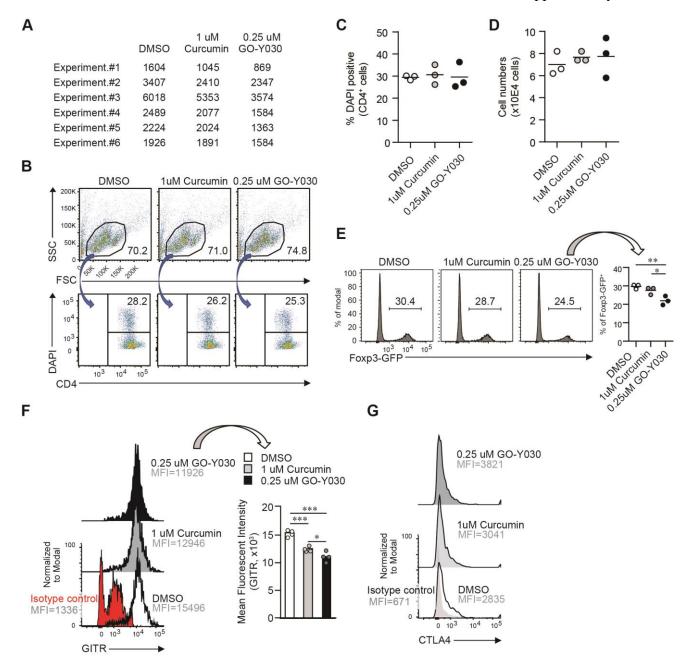
Splenic naïve CD4 $^+$ T cells were cultured in the presence of 2 ng/mL TGF- β with or without curcumin or GO-Y030 for three days. Percentage of TGF- β -induced Foxp3 $^+$ population is as set as "1". One-way analysis of variance (ANOVA) with post-hoc Tukey's multiple comparisons test employed.


Supplementary Figure 5: GO-Y030 prevents TGF-β-induced Foxp3⁺Tregs in human naïve CD4⁺ T cells.

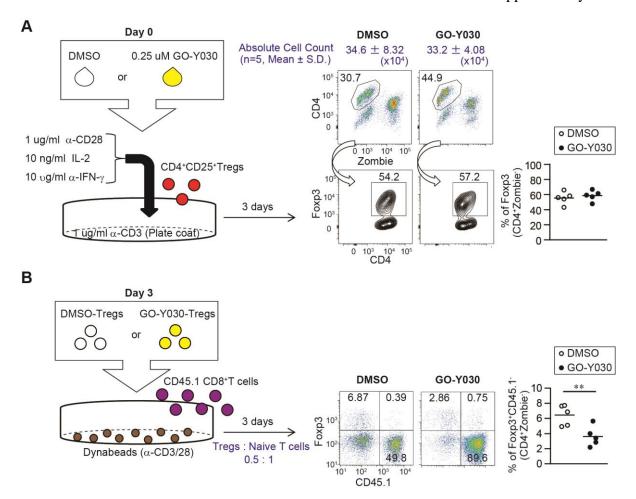
(A) Human naïve CD4⁺T cells were cultured in the presence of 2 ng/mL TGF- β 1 with or without curcumin or GO-Y030 for three days. Data are one representative at three independent experiments. (B) Relative Foxp3 expression in CD4⁺ T cells. TGF- β 1 stimulation only is set as "1". One-way analysis of variance (ANOVA) with post-hoc Dunnet's multiple (vs. TGF- β) comparisons test employed. (C) Relative live cell counts. Human naïve CD4⁺ T cells were cultured with or without 2 ng/mL TGF β and concentrations of Curcumin or GO-Y030 as indicated for 72 h followed by the addition of the cell counting reagent. Red: No cells (Medium alone). Data are representative at three independent experiments using different healthy donors. One-way ANOVA with post-hoc Dunnet's multiple (vs. TGF- β) comparisons test employed.


Supplemental Figure 6: GO-Y030 does not affect TGF-\(\beta\)-induced SMAD pathway.

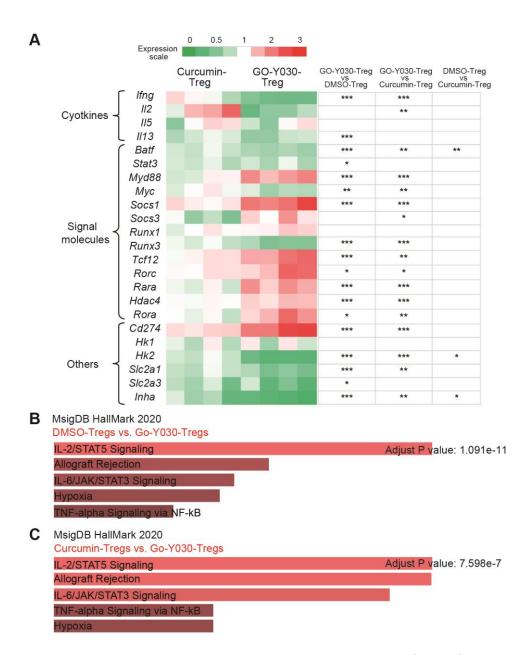
(A) Representative western blotting image of SMAD3, phospho-SMAD3 and GAPDH at three independent experiments. Naive $CD4^+$ T cells were stimulated with or without TGF- β in the presence or absence of 0.1 uM GO-Y030 or 1 uM Curcumin. (B) Relative SMAD3 and phospho-SMAD3 expression. (n=3, Mean with standard error of the mean) Without TGF- β and GO-Y030 stimulation was set as "1". One-way analysis of variance (ANOVA) with post-hoc Tukey's multiple comparisons test employed. One-way ANOVA with post-hoc Tukey's multiple comparisons test employed.


Supplemental Figure 7: Relative murine Foxp3-promoter activity

(A) pGL4-Foxp3 promoter (-1702 to +174) activity were analyzed using the Duo-luciferase assay systems. DMSO- or 1.0 uM GO-Y030 were treated HEK293 before 24 h electroporation. pcDNA3-empty vector transfection (Firefly/Renilla) was set as "1". (B) pGL4-basic promoter (control) activity was analyzed using the Duoluciferase assay systems. DMSO- or 1.0 uM GO-Y030 were treated HEK293 cells before 24 h transfection. Data are one representative at two independent experiments (n=2, Mean + standard deviation).

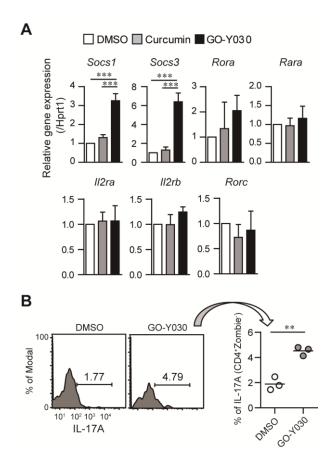

Supplemental Figure 8: Representative Foxp3 expression in Tregs after CD4⁺CD25⁺ isolation.

(**A**, **B**) Splenic CD4⁺CD25⁺ Tregs were isolated by using autoMACS (Milteny Biotech) and FACS analyses. Data are one representative of three independent experiments.

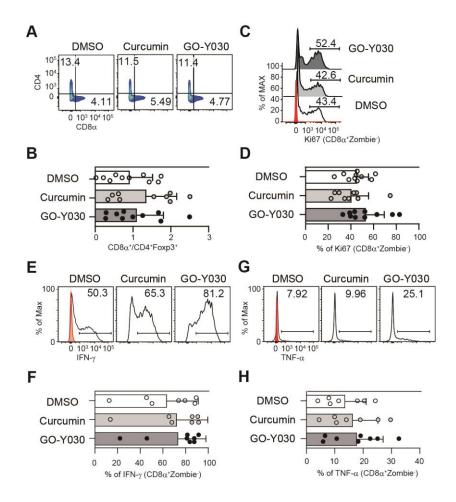

Supplemental Figure 9: Phenotype of Cultured CD4⁺CD25⁺ Tregs.

(A) Foxp3 Mean fluorescence Intensity in CD4⁺Foxp3⁺ Treg populations in Figure.3A. Data shows six independent experiments. experiments. (**B**, **C**) Relative cell survival rate after 18 h culture of CD4⁺CD25⁺ Tregs with or without Curcumin or GO-Y030. Data are one representative at more than three independent experiments. (**D**) Absolute number of cells after 18 h culture of CD4⁺CD25⁺ Tregs with or without Curcumin or GO-Y030. The starting number of cells in each wells was 1 x 10⁵ cells. (**E**) Foxp3-GFP positive cells in CD4⁺ population. Foxp3-GFP positive cells were purified by FACS-Aria II (>95%) and cultured 18 h with CD3 + CD28. Data are one representative at three independent experiments. GITR (**F**) and CTLA4 (**G**) in CD4⁺Foxp3⁺ Treg populations in Figure. 5A. Gray; Isotype control, Black; GITR or CTLA4. Data are one representative at three independent experiments. One-way analysis of variance with Tukey employed for statistic difference.

Supplemental Figure 10: GO-Y030 controls IL-2/STAT5 axis in CD4⁺CD25⁺ Tregs.


(A) Percentage of Foxp3 in cultured CD4⁺CD25⁺Tregs at day three. Data are representative at five independent experiments. Student T-test was employed. (B) Percentage of Foxp3 in cultured CD4⁺CD25⁺ Tregs in the suppression assay. DMSO- or GO-Y030-treated CD4⁺CD25⁺ Tregs were co-cultured with CD8⁺ T cells (Tregs:CD8⁺ T cells=0.5:1) for three days. Data are representative at shows five independent experiments. Student T-test was employed.

Supplemental Figure 11: GO-Y030 controls IL-2/STAT5 axis in CD4⁺CD25⁺ Tregs.


(A) Real time PCRs in 72 h culture of CD4 $^+$ CD25 $^+$ Tregs with or without Curcumin or GO-Y030. The color scale is shown at the top of heat map. Each genes expression of DMSO-treated Tregs are as set as "1". Data showed four independent experiments. (**B**, **C**) Enrichr- was used to calculate enrichment scores of signaling pathways. We selected genes of significantly difference expression (P < 0.05) between DMSO-Tregs and GO-Y030-Tregs (**B**,

https://maayanlab.cloud/Enrichr/enrich?dataset=ce1ae4783a07360aa829bddb0fd36eb1) or Curcumin-Tregs and GO-Y030-Tregs (**C**, https://maayanlab.cloud/Enrichr/enrich?dataset=35a8b176b017fbdc7c09576aa75995cd). Statistical analyses (One-way analysis of variance with Tukey) were performed.

Supplemental Figure 12: GO-Y030 controls IL-2/STAT5 axis in CD4⁺Foxp3-GFP⁺ Tregs.

(A) Real time PCRs in 72 h culture of CD4 $^+$ Foxp3-GFP $^+$ Tregs with or without 1 μ m Curcumin or 0.25 μ m GO-Y030. Data pooled three independent experiments. Statistical analyses (One-way analysis of variance with Tukey) were performed. (B). Th17 population in cultured CD4 $^+$ Foxp3-GFP $^+$ Tregs with or without 0.25 μ m GO-Y030. Student T-test was performed.

Supplemental Figure 13: GO-Y030 did not prevent infiltration and activation of CD8⁺ cells in tumor microenvironment.

(**A**) Frequency of CD4⁺/CD8 α ⁺ cells in tumor infiltrate lymphocytes. (**B**) Ratio of tumor infiltrate CD8⁺ cells to CD4⁺Foxp3⁺ Treg cells. (**C**, **D**) Ki67 expression in CD8 α ⁺ cells in tumor infiltrate lymphocytes. Red; isotype control. Data are one representative of each of the two independent experiments (**A**, **C**). (**E**, **F**) IFN- γ production from CD8 α ⁺ cells in tumor infiltrate lymphocytes. Red; isotype control. (**G**, **H**) TNF- α production from CD8 α ⁺ cells in tumor infiltrate lymphocytes. Red; isotype control. One-way analysis of variance with post-hoc Tukey's multiple comparisons test was used (**B**, **D**, **F**, **H**). The graph shows mean and standard deviation.