

Supplementary Material

 Supplementary Material

 2

3

Figure S1. The layout of testing completed by each horse. Each horse completed four days of testing.

Each test consisted of three five-minute free movements, one five-minute circle and, if applicable,

one five-minute figure-eight. Three free movements were completed in each test due to some free

movements having little to no movement. 24 testing sessions in total were completed, including 72

Free movement trials (3 per test day), 24 circle trials, and nine figure-eight trials (the smallest horse

at the personal barn attempted the figure-eights in the first test session with difficulty, due to stall

size. Therefore, it was removed from future sessions in this location).

 Supplementary Material

 4

1 APPENDIX A: MATLAB CODES

LPFilt100 CODE

%This script lowpass filters accelerometer data that has been

imported as

%follows.

 %Note re: placement and axes. The Apple Watch IMU should be

placed at the withers, right forelimb or hindlimb

 %Import data: To load the data from a .csv file, rename the

file 'Data', then block the 3 data columns to the right,

 %select 'Numeric Matrix' as the output type and then click

'Import data' under 'Import Selection'. Save the variable 'Data'

 % as a Matlab file ('Data.mat'). The data should be contained

in the data file Data.mat.

 %n = the order of the filter (default is 4) Fc = the low pass

cutoff

 %frequency (default is 10 Hz) Fs = the sampling rate (default

 %is 100 Hz) Wn = the normalized cutoff frequency (this should

be 0.2,

 %regardless of whether the sampling is 100 or 60 Hz (i.e., use

10 Hz

 %cutoff for 100 Hz sampling rate and 6 Hz for 60 Hz sampling;

Wn will =

 %0.2 in both cases). b and a = the filter coefficients

 load Data.mat

%Loads the imported data structure file.

 X = Data (2:end, 1); % Creates the variable X for the 1st

column (= the ML accel. data).

 Y = Data (2:end, 2); % Creates the variable Y for the 2nd

column (= the Vertical accel. data)

 Z = Data (2:end, 3); % Creates the variable Z for the 3rd

column (= the AP accel. data)

 n = 4;

 Fc = 10;

 Fs = 100;

 Wn = (Fc*2)/Fs;

 [b,a] = butter(n, Wn, 'low');

 filtx = filtfilt(b, a, X);

 filty = filtfilt(b, a, Y);

 filtz = filtfilt(b, a, Z);

STV_X CODE (Limbs)

5

 %This is the PREFERRED routine for processing the vertical

signal.

 %This script finds the time between the LP filtered X-axis

peaks (i.e, the individual Step Times) and removes outliers that

are

 %3 SD above and below the median Step time.

 %findpeaks is the function that finds the peaks of the signal.

 %pks = the magnitude of the peaks.

 %locs = the location (i.e, the sample number) of the peaks

(i.e., the

 %peak locations).

 [pks, locs] = findpeaks(filtx,'MinPeakDistance',80,

'MinPeakProminence', 0.5); %This command finds the peaks and

 %creates variables for the magnitude (pks) and locations (locs)

of the peaks. The command also specifies that

 %there must be a minimum horizontal distance between each peak

(i.e,. default = 20 samples; i.e., 0.33 s @ 60 Hz)

 %and that the peaks must be 0.30 g higher than the lowest

value.

 SteptimeX = diff(locs) * 1/Fs; %This command finds the

differences between the peak locations (i.e., # of samples)

 %and then multiplies this by the sampling rate time. This

provides the

 %series of individual step times.

 ThreshU = median(SteptimeX) + 3*(std(SteptimeX)); %This command

finds the median value of the SteptimeX variable

 %and then adds 3 standard deviations to it.

 OutliersU = find(SteptimeX > ThreshU); %This creates a variable

that contains the outliers that are greater than the

 %Threshold value.

 SteptimeX(OutliersU) = [median(SteptimeX)]; %This command

replaces the outliers in SteptimeX with the median

 %steptime.

 %The nextseries of commands repeats the above process for

steptimes

 %that are 3 SD's below the median step time.

 ThreshD = median(SteptimeX) - 3*(std(SteptimeX));

 OutliersD = find(SteptimeX < ThreshD);

 SteptimeX(OutliersD) = [median(SteptimeX)];

 Odd = SteptimeX(1:2:end,:); %This creates a variable of odd

steptimes.

 Even = SteptimeX(2:2:end,:); %This creates a variable of even

steptimes.

 Supplementary Material

 6

 SizeO = size (Odd,1); %This provides the number of rows in the

Odd steptime variable.

 SizeE = size (Even,1); %This provides the number of rows in the

Even steptime variable.

 %The "if elseif" statement below says: if the size (i.e., # of

rows) of

 %the Odd and Even variables are the same, then Odd = Odd (i.e.,

do

 %nothing). If the size of Odd is greater than Even (which will

occur

 %when you have an odd number of rows) then the last row in the

Odd variable is to be removed (Odd(SizeO(1),:) = [];).

 if SizeO == SizeE

 Odd = Odd;

 elseif SizeO > SizeE;

 Odd(SizeO(1),:) = [];

 end

 StridetimeX = Odd + Even; %This statement adds each row of the

Odd and Even variables together to provide the series of

 %stride times.

 AsymX = (abs(mean(Odd) - mean(Even))/((mean(Odd) +

mean(Even))/2))*100; %This command finds the asymmetry between

 %the mean of the right and left steps.

 avgStepX = mean(SteptimeX); %This variable finds the mean of

the series of step times.

 avgStrideX = mean(StridetimeX); %This variable find the mean of

the series of stride times.

 COVStepX = (std(SteptimeX)/avgStepX) *100; %This variable finds

the coefficient of variation of the step time series.

 COVStrideX = (std(StridetimeX)/avgStrideX) *100; %This variable

finds the coefficient of variation of the stride time

 %series.

 [CadenceX] = 1/((size(filtx)/size(SteptimeX))/60)*60; %This

variable determines the overall cadence of the series

 %based on the total number of samples (in filtx) and the total

number of

 %steps (SteptimeX).

 StepcountX = SizeE + SizeO;

 save StepX.txt SteptimeX -ascii %This saves the variable

Steptime (containing the series of step times) to a .txt file.

 save StrideX.txt StridetimeX -ascii %This saves the variable

Stridetime (containing the series of stride times) to

 %a .txt file.

 %The following line saves the output variables to a ascii .txt

file

7

 %(figure out how to include a column of labels).

 save OutputX.txt StepcountX avgStepX COVStepX CadenceX AsymX -

ascii

STV_XW CODE (Withers)

%This is an alternative routine for processing the "withers"

mediolateral signal.

 %This script finds the time between the LP filtered X-axis

peaks (i.e, the individual Step Times) and removes outliers that

are

 %3 SD above and below the median Step time.

 %findpeaks is the function that finds the peaks of the signal.

 %pks = the magnitude of the peaks.

 %locs = the location (i.e, the sample number) of the peaks

(i.e., the

 %peak locations).

 [pks, locs] = findpeaks(filtx,'MinPeakDistance',35,

'MinPeakProminence', 0.3); %This command finds the peaks and

 %creates variables for the magnitude (pks) and locations (locs)

of the peaks. The command also specifies that

 %there must be a minimum horizontal distance between each peak

(i.e,. default = 20 samples; i.e., 0.33 s @ 60 Hz)

 %and that the peaks must be 0.30 g higher than the lowest

value.

 SteptimeX = diff(locs) * 1/Fs; %This command finds the

differences between the peak locations (i.e., # of samples)

 %and then multiplies this by the sampling rate time. This

provides the

 %series of individual step times.

 ThreshU = median(SteptimeX) + 3*(std(SteptimeX)); %This command

finds the median value of the SteptimeX variable

 %and then adds 3 standard deviations to it.

 OutliersU = find(SteptimeX > ThreshU); %This creates a variable

that contains the outliers that are greater than the

 %Threshold value.

 SteptimeX(OutliersU) = [median(SteptimeX)]; %This command

replaces the outliers in SteptimeX with the median

 %steptime.

 %The nextseries of commands repeats the above process for

steptimes

 %that are 3 SD's below the median step time.

 ThreshD = median(SteptimeX) - 3*(std(SteptimeX));

 OutliersD = find(SteptimeX < ThreshD);

 SteptimeX(OutliersD) = [median(SteptimeX)];

 Supplementary Material

 8

 Odd = SteptimeX(1:2:end,:); %This creates a variable of odd

steptimes.

 Even = SteptimeX(2:2:end,:); %This creates a variable of even

steptimes.

 SizeO = size (Odd,1); %This provides the number of rows in the

Odd steptime variable.

 SizeE = size (Even,1); %This provides the number of rows in the

Even steptime variable.

 %The "if elseif" statement below says: if the size (i.e., # of

rows) of

 %the Odd and Even variables are the same, then Odd = Odd (i.e.,

do

 %nothing). If the size of Odd is greater than Even (which will

occur

 %when you have an odd number of rows) then the last row in the

Odd variable is to be removed (Odd(SizeO(1),:) = [];).

 if SizeO == SizeE

 Odd = Odd;

 elseif SizeO > SizeE;

 Odd(SizeO(1),:) = [];

 end

 StridetimeX = Odd + Even; %This statement adds each row of the

Odd and Even variables together to provide the series of

 %stride times.

 AsymX = (abs(mean(Odd) - mean(Even))/((mean(Odd) +

mean(Even))/2))*100; %This command finds the asymmetry between

 %the mean of the right and left steps.

 avgStepX = mean(SteptimeX); %This variable finds the mean of

the series of step times.

 avgStrideX = mean(StridetimeX); %This variable find the mean of

the series of stride times.

 COVStepX = (std(SteptimeX)/avgStepX) *100; %This variable finds

the coefficient of variation of the step time series.

 COVStrideX = (std(StridetimeX)/avgStrideX) *100; %This variable

finds the coefficient of variation of the stride time

 %series.

 [CadenceX] = 1/((size(filtx)/size(SteptimeX))/60)*60; %This

variable determines the overall cadence of the series

 %based on the total number of samples (in filty) and the total

number of

 %steps (SteptimeX).

 StepcountX = SizeE + SizeO;

 save StepX.txt SteptimeX -ascii %This saves the variable

Steptime (containing the series of step times) to a .txt file.

9

 save StrideX.txt StridetimeX -ascii %This saves the variable

Stridetime (containing the series of stride times) to

 %a .txt file.

 %The following line saves the output variables to a ascii .txt

file

 %(figure out how to include a column of labels).

 save OutputX.txt StepcountX avgStepX COVStepX CadenceX AsymX -

ascii

STV_Y CODE (Limbs)

%This is the PREFERRED routine for processing the AP signal.

 %This script finds the time between the LP filtered Y-axis

peaks (i.e, the individual Step Times) and removes outliers that

are

 %3 SD above and below the median Step time.

 %findpeaks is the function that finds the peaks of the signal.

 %pks = the magnitude of the peaks.

 %locs = the location (i.e, the sample number) of the peaks

(i.e., the

 %peak locations).

 [pks, locs] = findpeaks(filty,'MinPeakDistance',80,

'MinPeakProminence', 0.5); %This command finds the peaks and

 %creates variables for the magnitude (pks) and locations (locs)

of the peaks. The command also specifies that

 %there must be a minimum horizontal distance between each peak

(i.e,. default = 20 samples; i.e., 0.33 s @ 60 Hz)

 %and that the peaks must be 0.30 g higher than the lowest

value.

 SteptimeY = diff(locs) * 1/Fs; %This command finds the

differences between the peak locations (i.e., # of samples)

 %and then multiplies this by the sampling rate time. This

provides the

 %series of individual step times.

 ThreshU = median(SteptimeY) + 3*(std(SteptimeY)); %This command

finds the median value of the SteptimeY variable

 %and then adds 3 standard deviations to it.

 OutliersU = find(SteptimeY > ThreshU); %This creates a variable

that contains the outliers that are greater than the

 %Threshold value.

 SteptimeY(OutliersU) = [median(SteptimeY)]; %This command

replaces the outliers in SteptimeY with the median

 %steptime.

 Supplementary Material

 10

 %The nextseries of commands repeats the above process for

steptimes

 %that are 3 SD's below the median step time.

 ThreshD = median(SteptimeY) - 3*(std(SteptimeY));

 OutliersD = find(SteptimeY < ThreshD);

 SteptimeY(OutliersD) = [median(SteptimeY)];

 Odd = SteptimeY(1:2:end,:); %This creates a variable of odd

steptimes.

 Even = SteptimeY(2:2:end,:); %This creates a variable of even

steptimes.

 SizeO = size (Odd,1); %This provides the number of rows in the

Odd steptime variable.

 SizeE = size (Even,1); %This provides the number of rows in the

Even steptime variable.

 %The "if elseif" statement below says: if the size (i.e., # of

rows) of

 %the Odd and Even variables are the same, then Odd = Odd (i.e.,

do

 %nothing). If the size of Odd is greater than Even (which will

occur

 %when you have an odd number of rows) then the last row in the

Odd variable is to be removed (Odd(SizeO(1),:) = [];).

 if SizeO == SizeE

 Odd = Odd;

 elseif SizeO > SizeE;

 Odd(SizeO(1),:) = [];

 end

 StridetimeY = Odd + Even; %This statement adds each row of the

Odd and Even variables together to provide the series of

 %stride times.

 AsymY = (abs(mean(Odd) - mean(Even))/((mean(Odd) +

mean(Even))/2))*100; %This command finds the asymmetry between

 %the mean of the right and left steps.

 avgStepY = mean(SteptimeY); %This variable finds the mean of

the series of step times.

 avgStrideY = mean(StridetimeY); %This variable find the mean of

the series of stride times.

 COVStepY = (std(SteptimeY)/avgStepY) *100; %This variable finds

the coefficient of variation of the step time series.

 COVStrideY = (std(StridetimeY)/avgStrideY) *100; %This variable

finds the coefficient of variation of the stride time

 %series.

 [CadenceY] = 1/((size(filty)/size(SteptimeY))/60)*60; %This

variable determines the overall cadence of the series

11

 %based on the total number of samples (in filty) and the total

number of

 %steps (SteptimeY).

 StepcountY = SizeE + SizeO;

 save StepY.txt SteptimeY -ascii %This saves the variable

Steptime (containing the series of step times) to a .txt file.

 save StrideY.txt StridetimeY -ascii %This saves the variable

Stridetime (containing the series of stride times) to

 %a .txt file.

 %The following line saves the output variables to a ascii .txt

file

 %(figure out how to include a column of labels).

 save OutputY.txt StepcountY avgStepY COVStepY CadenceY AsymY -

ascii

STV_YW CODE (Withers)

 %This is the PREFERRED routine for processing the AP signal.

 %This script finds the time between the LP filtered Y-axis

peaks (i.e, the individual Step Times) and removes outliers that

are

 %3 SD above and below the median Step time.

 %findpeaks is the function that finds the peaks of the signal.

 %pks = the magnitude of the peaks.

 %locs = the location (i.e, the sample number) of the peaks

(i.e., the

 %peak locations).

 [pks, locs] = findpeaks(filty,'MinPeakDistance',35,

'MinPeakProminence', 0.3); %This command finds the peaks and

 %creates variables for the magnitude (pks) and locations (locs)

of the peaks. The command also specifies that

 %there must be a minimum horizontal distance between each peak

(i.e,. default = 20 samples; i.e., 0.33 s @ 60 Hz)

 %and that the peaks must be 0.30 g higher than the lowest

value.

 SteptimeY = diff(locs) * 1/Fs; %This command finds the

differences between the peak locations (i.e., # of samples)

 %and then multiplies this by the sampling rate time. This

provides the

 %series of individual step times.

 ThreshU = median(SteptimeY) + 3*(std(SteptimeY)); %This command

finds the median value of the SteptimeY variable

 %and then adds 3 standard deviations to it.

 OutliersU = find(SteptimeY > ThreshU); %This creates a variable

that contains the outliers that are greater than the

 Supplementary Material

 12

 %Threshold value.

 SteptimeY(OutliersU) = [median(SteptimeY)]; %This command

replaces the outliers in SteptimeY with the median

 %steptime.

 %The nextseries of commands repeats the above process for

steptimes

 %that are 3 SD's below the median step time.

 ThreshD = median(SteptimeY) - 3*(std(SteptimeY));

 OutliersD = find(SteptimeY < ThreshD);

 SteptimeY(OutliersD) = [median(SteptimeY)];

 Odd = SteptimeY(1:2:end,:); %This creates a variable of odd

steptimes.

 Even = SteptimeY(2:2:end,:); %This creates a variable of even

steptimes.

 SizeO = size (Odd,1); %This provides the number of rows in the

Odd steptime variable.

 SizeE = size (Even,1); %This provides the number of rows in the

Even steptime variable.

 %The "if elseif" statement below says: if the size (i.e., # of

rows) of

 %the Odd and Even variables are the same, then Odd = Odd (i.e.,

do

 %nothing). If the size of Odd is greater than Even (which will

occur

 %when you have an odd number of rows) then the last row in the

Odd variable is to be removed (Odd(SizeO(1),:) = [];).

 if SizeO == SizeE

 Odd = Odd;

 elseif SizeO > SizeE;

 Odd(SizeO(1),:) = [];

 end

 StridetimeY = Odd + Even; %This statement adds each row of the

Odd and Even variables together to provide the series of

 %stride times.

 AsymY = (abs(mean(Odd) - mean(Even))/((mean(Odd) +

mean(Even))/2))*100; %This command finds the asymmetry between

 %the mean of the right and left steps.

 avgStepY = mean(SteptimeY); %This variable finds the mean of

the series of step times.

 avgStrideY = mean(StridetimeY); %This variable find the mean of

the series of stride times.

 COVStepY = (std(SteptimeY)/avgStepY) *100; %This variable finds

the coefficient of variation of the step time series.

13

 COVStrideY = (std(StridetimeY)/avgStrideY) *100; %This variable

finds the coefficient of variation of the stride time

 %series.

 [CadenceY] = 1/((size(filty)/size(SteptimeY))/60)*60; %This

variable determines the overall cadence of the series

 %based on the total number of samples (in filty) and the total

number of

 %steps (SteptimeY).

 StepcountY = SizeE + SizeO;

 save StepY.txt SteptimeY -ascii %This saves the variable

Steptime (containing the series of step times) to a .txt file.

 save StrideY.txt StridetimeY -ascii %This saves the variable

Stridetime (containing the series of stride times) to

 %a .txt file.

 %The following line saves the output variables to a ascii .txt

file

 %(figure out how to include a column of labels).

 save OutputY.txt StepcountY avgStepY COVStepY CadenceY AsymY -

ascii

STV_Z CODE (Limbs)

 %This is the PREFERRED routine for processing the ML signal.

 %This script finds the time between the LP filtered Z-axis (AP)

peaks (i.e, the individual Step times) and removes outliers that

are

 %3 SD above and below the median Step time.

 %findpeaks is the function that finds the peaks of the signal.

 %pks = the magnitude of the peaks.

 %locs = the location (i.e, the sample number) of the peaks

(i.e., the

 %peak locations).

 Negz = filtz * -1; %This command flips the LP filtered Z-axis

signal (so that the peak minimums are now maximums).

 [pks, locs] = findpeaks(Negz,'MinPeakDistance',80,

'MinPeakProminence', 0.50); %This command finds the peaks and

creates variables

 %for the magnitude (pks) and locations (locs) of the peaks. The

command also specifies that there must

 %be a minimum horizontal distance between each peak (i.e,. 20

samples = 0.33 s)

 %and that the peaks must be 0.3 g higher than the lowest value.

 SteptimeZ = diff(locs) * 1/Fs; %This command finds the

differences between the peak locations (i.e., # of samples)

 Supplementary Material

 14

 %and then multiplies this by the sampling rate time. This

provides the

 %series of individual step times.

 ThreshU = median(SteptimeZ) + 3*(std(SteptimeZ)); %This command

finds the median value of the SteptimeZ variable

 %and then adds 3 standard deviations to it.

 OutliersU = find(SteptimeZ > ThreshU); %This creates a variable

that contains the outliers that are greater than the

 %Threshold value.

 SteptimeZ(OutliersU) = [median(SteptimeZ)]; %This command

replaces the outliers in SteptimeZ with the median

 %steptime.

 %The nextseries of commands repeats the above process for

steptimes

 %that are 3 SD's below the median step time.

 ThreshD = median(SteptimeZ) - 3*(std(SteptimeZ));

 OutliersD = find(SteptimeZ < ThreshD);

 SteptimeZ(OutliersD) = [median(SteptimeZ)];

 Odd = SteptimeZ(1:2:end,:); %This creates a variable of odd

steptimes.

 Even = SteptimeZ(2:2:end,:); %This creates a variable of even

steptimes.

 SizeO = size (Odd,1); %This provides the number of rows in the

Odd steptime variable.

 SizeE = size (Even,1); %This provides the number of rows in the

Even steptime variable.

 %The "if elseif" statement below says: if the size (i.e., # of

rows) of

 %the Odd and Even variables are the same, then Odd = Odd (i.e.,

do

 %nothing). If the size of Odd is greater than Even (which will

occur

 %when you have an odd number of rows) then the last row in the

Odd variable is to be removed (Odd(SizeO(1),:) = [];).

 if SizeO == SizeE

 Odd = Odd;

 elseif SizeO > SizeE;

 Odd(SizeO(1),:) = [];

 end

 StridetimeZ = Odd + Even; %This statement adds each row of the

Odd and Even variables together to provide the series of

 %stride times.

15

 AsymZ = (abs(mean(Odd) - mean(Even))/((mean(Odd) +

mean(Even))/2))*100; %This command finds the asymmetry between

 %the mean of the right and left steps.

 avgStepZ = mean(SteptimeZ); %This variable finds the mean of

the series of step times.

 avgStrideZ = mean(StridetimeZ); %This variable find the mean of

the series of stride times.

 COVStepZ = (std(SteptimeZ)/avgStepZ) *100; %This variable finds

the coefficient of variation of the step time series.

 COVStrideZ = (std(StridetimeZ)/avgStrideZ) *100; %This variable

finds the coefficient of variation of the stride time

 %series.

 [CadenceZ] = 1/((size(Negz)/size(SteptimeZ))/60)*60; %This

variable determines the overall cadence of the series

 %based on the total number of samples (in Negz) and the total

number of

 %steps (SteptimeZ).

 StepcountZ = SizeE + SizeO;

 save StepZ.txt SteptimeZ -ascii %This saves the variable

Steptime (containing the series of step times) to a .txt file.

 save StrideZ.txt StridetimeZ -ascii %This saves the variable

Stridetime (containing the series of stride times) to

 %a .txt file.

 %The following line saves the output variables to a ascii .txt

file

 %(figure out how to include a column of labels).

 save OutputZ.txt StepcountZ avgStepZ COVStepZ CadenceZ AsymZ -

ascii

STV_ZW CODE (Withers)

 %This is the PREFERRED routine for processing the vertical

signal.

 %This script finds the time between the LP filtered Z-axis (AP)

peaks (i.e, the individual Step times) and removes outliers that

are

 %3 SD above and below the median Step time.

 %findpeaks is the function that finds the peaks of the signal.

 %pks = the magnitude of the peaks.

 %locs = the location (i.e, the sample number) of the peaks

(i.e., the

 %peak locations).

 Negz = filtz * -1; %This command flips the LP filtered Z-axis

signal (so that the peak minimums are now maximums).

 Supplementary Material

 16

 [pks, locs] = findpeaks(Negz,'MinPeakDistance',20,

'MinPeakProminence', 0.25); %This command finds the peaks and

creates variables

 %for the magnitude (pks) and locations (locs) of the peaks. The

command also specifies that there must

 %be a minimum horizontal distance between each peak (i.e,. 20

samples = 0.33 s)

 %and that the peaks must be 0.3 g higher than the lowest value.

 SteptimeZ = diff(locs) * 1/Fs; %This command finds the

differences between the peak locations (i.e., # of samples)

 %and then multiplies this by the sampling rate time. This

provides the

 %series of individual step times.

 ThreshU = median(SteptimeZ) + 3*(std(SteptimeZ)); %This command

finds the median value of the SteptimeZ variable

 %and then adds 3 standard deviations to it.

 OutliersU = find(SteptimeZ > ThreshU); %This creates a variable

that contains the outliers that are greater than the

 %Threshold value.

 SteptimeZ(OutliersU) = [median(SteptimeZ)]; %This command

replaces the outliers in SteptimeZ with the median

 %steptime.

 %The nextseries of commands repeats the above process for

steptimes

 %that are 3 SD's below the median step time.

 ThreshD = median(SteptimeZ) - 3*(std(SteptimeZ));

 OutliersD = find(SteptimeZ < ThreshD);

 SteptimeZ(OutliersD) = [median(SteptimeZ)];

 Odd = SteptimeZ(1:2:end,:); %This creates a variable of odd

steptimes.

 Even = SteptimeZ(2:2:end,:); %This creates a variable of even

steptimes.

 SizeO = size (Odd,1); %This provides the number of rows in the

Odd steptime variable.

 SizeE = size (Even,1); %This provides the number of rows in the

Even steptime variable.

 %The "if elseif" statement below says: if the size (i.e., # of

rows) of

 %the Odd and Even variables are the same, then Odd = Odd (i.e.,

do

 %nothing). If the size of Odd is greater than Even (which will

occur

 %when you have an odd number of rows) then the last row in the

Odd variable is to be removed (Odd(SizeO(1),:) = [];).

17

 if SizeO == SizeE

 Odd = Odd;

 elseif SizeO > SizeE;

 Odd(SizeO(1),:) = [];

 end

 StridetimeZ = Odd + Even; %This statement adds each row of the

Odd and Even variables together to provide the series of

 %stride times.

 AsymZ = (abs(mean(Odd) - mean(Even))/((mean(Odd) +

mean(Even))/2))*100; %This command finds the asymmetry between

 %the mean of the right and left steps.

 avgStepZ = mean(SteptimeZ); %This variable finds the mean of

the series of step times.

 avgStrideZ = mean(StridetimeZ); %This variable find the mean of

the series of stride times.

 COVStepZ = (std(SteptimeZ)/avgStepZ) *100; %This variable finds

the coefficient of variation of the step time series.

 COVStrideZ = (std(StridetimeZ)/avgStrideZ) *100; %This variable

finds the coefficient of variation of the stride time

 %series.

 [CadenceZ] = 1/((size(Negz)/size(SteptimeZ))/60)*60; %This

variable determines the overall cadence of the series

 %based on the total number of samples (in Negz) and the total

number of

 %steps (SteptimeZ).

 StepcountZ = SizeE + SizeO;

 save StepZ.txt SteptimeZ -ascii %This saves the variable

Steptime (containing the series of step times) to a .txt file.

 save StrideZ.txt StridetimeZ -ascii %This saves the variable

Stridetime (containing the series of stride times) to

 %a .txt file.

 %The following line saves the output variables to a ascii .txt

file

 %(figure out how to include a column of labels).

 save OutputZ.txt StepcountZ avgStepZ COVStepZ CadenceZ AsymZ -

ascii

 Supplementary Material

 18

