
Supplementary material for “Mechanical principles governing dendritic
spine shapes”

H. Alimohamadi1, M.K. Bell1, S. Halpain2,3 and P. Rangamani∗1

1Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA
2Sanford Consortium for Regenerative Medicine, La Jolla 92037, USA

3Section of Neurobiology, Division of Biological Sciences University of California San Diego, La Jolla 92037,
USA

Contents

1 Model development 3
1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Membrane mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Helfrich energy including deviatoric curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Governing equations in axisymmetric coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Axisymmetric coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Equilibrium equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Analytical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Analytical estimation for filopodia-shaped spines with an axial force . . . . . . . . . . . . 7
1.5.2 Analytical estimation for thin-shaped spines with a uniform normal force density . . . . . 8
1.5.3 Spontaneous deviatoric curvature and the radius of the spines neck . . . . . . . . . . . . . 9

2 Supplementary figures 11

∗prangamani@ucsd.edu

1



Table S1: Notations used in the model
Notation Description Units
E Strain energy pN · nm
p Pressure difference across the membrane pN·nm−2

θα Surface parametrization
σ Local energy per unit area pN ·nm−1

r Position vector
n Normal vector to the membrane surface unit vector
aα Basis vector describing the tangent plane
aα Contravariant basis vector
λ Tension, −(W + γ) pN·nm−1

H Mean curvature nm−1

K Gaussian curvature nm−2

D Curvature deviator nm−1

Dm Spontaneous deviatoric curvature nm−1

κ Bending modulus pN · nm
s Arclength nm
ψ Angle between er and as
r Radial distance nm
z Elevation from base plane nm
er(θ) Radial basis vector unit vector
k Altitudinal basis vector unit vector
f Force density pN·nm−2

fz Axial force density pN·nm−2

fn Normal force density pN·nm−2

Fz Axial force pN
κτ Tangential curvature nm−1

κν Transverse curvature nm−1

A Total area of membrane nm2

Aforce Area of applied force nm2

γ unit vector representing the one-dimensional orientation of a protein coat
µ unit vector normal to γ and n
V Confined volume by membrane area nm3

Amax Maximum area of membrane nm2

λ0 Surface tension at boundary pN·nm−1

L Membrane height nm
M Shape equation variable nm−1

2



1 Model development

1.1 Assumptions

• We treat the lipid bilayer as a continuous thin elastic shell assuming that the membrane thickness is negli-
gible compared to the radii of membrane curvature [1]. This allows us to model the bending energy of the
membrane using the modified version of the Helfrich–Canham energy including the effect of spatially vary-
ing deviatoric curvature to represent the induced anisotropic curvatures by periodic F-actin rings and other
structures [2–7].

• We assume that the membrane is locally inextensible since the stretching modulus of the lipid bilayer is an
order of magnitude larger than the membrane bending modulus [8]. We implemented this constraint using a
Lagrange multiplier which can be interpreted as the tension [9–11]. We note that this membrane tension, in
this study, is better interpreted as the effective contribution of the membrane in-plane stresses and membrane-
cortex interactions [12].

• We assume that the time scales of mechanical forces are much faster than other events in dendritic spines
allowing us to assume mechanical equilibrium and neglect inertia [9, 13]. This assumption is reasonable
because the time scale of the equilibration of the mechanical forces is much smaller than the time scale of
actin polymerization in dendritic spines [14].

• We assume that the force exerted by the actin cytoskeleton can be represented as work done on the membrane
and do not include the molecular details of the actin network [13, 15–18]. Additionally, we assume that the
periodic ring shaped structures of actin and related proteins such as βII spectrins, septics, and BAR-domain
proteins can be represented using an anisotropic spontaneous curvature [4, 6, 7, 19].

• For ease of computation, we assume that the geometry of a dendritic spine is rotationally symmetric (see
Fig. 1B) [13]. This assumption allows us to parametrize the whole surface by a single parameter which is
the arclength.

1.2 Membrane mechanics

At equilibrium, the total energy of the system (E) including the elastic storage energy of the membrane (Eelastic)
and the work done by the applied forces by the actin filament (Wforce) is given by [5, 15, 20, 21]

E = Eelastic −Wforce, (S1)

where

Eelastic =

∫
ω
(σ(H,D; θα) + λ(θα))da− pV and (S2a)

Wforce =

∫
ω

f(θα) · (r− r0)da. (S2b)

Here ω is the total membrane surface area, σ is the energy density, θα denotes the surface coordinate where
α ∈ {1, 2}, H is the mean curvature of the surface, K is the Gaussian curvature, D is the curvature deviator, λ is
the tension field which is the Lagrange multiplier associated with the local area constraint, p is the transmembrane
pressure that is the Lagrange multiplier associated with the volume constraint, V is the enclosed volume, f is the
applied force per unit area, r is the position vector in the current configuration, and r0 is the position vector in the
reference frame. We can write the variation of the total free energy of the system as [15, 20]
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Ė = Ėelastic − Ẇforce, (S3)

where

Ėelastic =

∫
ω
σ̇ da+

∫
ω
(σ + λ)(J̇/J) da− pV̇ and (S4a)

Ẇforce =

∫
ω

f(θα) · u da, (S4b)

where J =
√
a/A is the local areal stretch due to mapping from a reference frame (A) to the actual surface (a),

and u is the virtual displacement of the surface given by

u(θα) =
∂

∂ε
r(θα, ε)|ε=0 = ṙ. (S5)

Minimization of the energy in Eq. S3 by usage of the variational approach gives the governing shape equation
and the incompressibility condition in a heterogeneous membrane as

p+ f · n = ∆(
1

2
σH) + (σK);αβ b̃

αβ + σH(2H2 −K) + 2H(KσK − σ)− 2λH

+
1

2
[σD(γαγβ − µαµβ)];βα +

1

2
σD(γαγβ − µαµβ)bαηb

η
β,

(S6)

and

(
∂σ

∂θα|exp
+ λ,α + σD[bαβ(γαγβ);η])a

βα = f · as, (S7)

where ∆(·) is the surface Laplacian, n is the normal vector to the surface, as is a tangent vector on the surface (we
will define it in the next section for axisymmetric coordinates), aαβ is the dual metric, bαβ are the coefficients of
the second fundamental form, bαβ are the mixed components of the curvature, b̃αβ is the co-factor of the curvature
tensor, (.);α is the covariant derivative, (.),α is the partial derivative, and ()|exp denotes the explicit derivative with
respect to coordinate θα. Also, γα and µα are the projections of γ and µ along the tangential vectors given by [20]

γα = γ · aα

µα = µ · aα,
(S8)

where aα is the contravariant basis vectors, γ is a unit vector representing the orientation of a one-dimensional
curve on the surface which is tangential to the protein coat, and µ is a unit vector defined as

µ = n× γ. (S9)

1.3 Helfrich energy including deviatoric curvature

We modeled the combined effects of BAR domain proteins and periodic F-actin by deviatoric curvature using the
modified version of Helfrich energy that includes deviatoric curvature D(θα) [2–7, 22] given as
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σ(H,D; θα) = (2k1 + k2)H
2 − k2(D −Dm(θα))2, (S10)

where k1 and k2 are constants and Dm is the spontaneous (intrinsic) deviatoric curvature which can be spatially
heterogeneous along the membrane surface [6, 7, 22]. For an isotropic case (Dm = 0), Eq. 3 reduces to the classical
Helfrich energy with quadratic dependence on mean curvature and linear dependence on Gaussian curvature [22],
where k1 = κ (bending modulus) and k2 = κG (Gaussian modulus). In this study, we assume κG ∼ −κ [23] and
simplify the bending energy density in Eq. S10 as [20, 22]

σ(H,D; θα) = κH2 + κ(D −Dm(θα))2, (S11)

where κ is the bending modulus and Dm is the spontaneous (intrinsic) deviatoric curvature [20, 24]. It should
be noted that in (Eq. S11), there are two terms corresponding to bending energy: (i) isotropic bending energy
(κH2) and (ii) anisotropic bending energy (κ(D −Dm)2). For example, in the case where there is no spontaneous
deviatoric curvature (Dm = 0), the total bending energy density of a tubular membrane (H = D) is 2κH2, and the
equilibrium radius of the tubular formed with an axial force is r =

√
κ/2λ, which is exactly the same as the radius

given in the previous studies [25]. Substituting Eq. S11 in Eqs. S6 and S7 gives

−κ
[
2H(D −Dm)2 −

(
(D −Dm)(γαγβ − µαµβ)

)
;βα
− (D −Dm)(γαγβ − µαµβ)bαηb

η
β

]
︸ ︷︷ ︸

Induced anistropic curvature effects

+κ∆H + 2κH(H2 −K)︸ ︷︷ ︸
Elastic effects

= p+ 2λH︸ ︷︷ ︸
Capillary effects

+ f · n︸︷︷︸
Force due to actin

,

(S12)

and

λ,α︸︷︷︸
Tension
variation

= 2κ(D −Dm)
∂Dm

∂θα
+ 2κ(D −Dm)bαβ(γαγβ);η︸ ︷︷ ︸

Anisotropic curvature induced variation

− f · as︸ ︷︷ ︸
Force-induced

variation

. (S13)

It should be mentioned that in the modified version of Helfrich energy ( Eq. S11), we assumed that the induced
isotropic spontaneous curvature (C) by BAR domain proteins or periodic F-actin is negligible and we ignored the
effect of the spontaneous curvature (C = 0).

1.4 Governing equations in axisymmetric coordinates

1.4.1 Axisymmetric coordinates

We parameterize a surface of revolution with respect to the z axis (Fig. 1B) in the coordinate basis (er, eθ,k) by

r(s, θ) = r(s)er(θ) + z(s)k, (S14)

where s is the arclength along the curve, r(s) is the radial distance from the axis of rotation, and z(s) is the elevation
from the reference plane. Since (dr/ds)2 + (dz/ds)2 = 1, we can define ψ (the angle made by the tangent with
respect to the horizontal) such that the normal and tangent vectors are given by

n = − sinψer(θ) + cosψk and as = cosψer(θ) + sinψk. (S15)

Following this we have
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r′(s) = cos(ψ), (S16a)

z′(s) = sin(ψ), (S16b)

where (.)′ = d(.)
ds . We can now write the tangential (κν) and transverse (κτ ) principal curvatures as

κν = ψ
′
, κτ = r−1 sinψ, (S17)

and the mean curvature (H), Gaussian curvature (K), and the curvature deviator (D) as

H =
1

2
(κν + κτ ) =

1

2
(ψ
′
+ r−1 sinψ),

K = κτκν =
ψ
′
sinψ

r
,

D =
1

2
(κτ − κν) =

1

2
(r−1 sinψ − ψ′) = r−1 sinψ −H.

(S18)

1.4.2 Equilibrium equations

In order to simplify the governing shape and incompressibility equations, we define M as

M =
1

2κ
r[(σH)′ − (σD)′], (S19)

which allows us to simplify the shape equation (Eq. S12) and the inextensibility condition (Eq. S13) as a system
of first order differential equations given by

r′ = cosψ, z′ = sinψ, rψ′ = 2rH − sinψ,

2rH ′ = M − rD′m + 2H cos(ψ)− 2 cos(ψ) sin(ψ)

r
,

M ′

r
=
p

κ
+

f · n
κ

+ 2H
[
H2 +

λ

κ
+ (

sin(ψ)

r
−H −Dm)2 − 2(

sin(ψ)

r
−H −Dm)(

sin(ψ)

r
−H)

]
−2H

[
H2 +

(
H − r−1 sinψ

)2]− 2
cos(ψ)

r

[H cos(ψ)

r
− sin(ψ) cos(ψ)

r2
− D′m

2
− M

2r
],

λ′ = −2κ(
sin(ψ)

r
−H −Dm)D′m − f · as.

(S20)

In axisymmetric coordinates, the total area of the manifold (A) can be expressed in term of arclength as

A(s) = 2π

∫ s

0
r(t)dt → dA

ds
= 2πr. (S21)

This allows us to write the governing differential equations (Eq. S20) in terms of the derivative of area instead of
arclength.

In order to solve the coupled partial differential equations in Eq. S20, we impose six boundary conditions as
follow:

r(0+) = 0, M(0+) = 0, ψ(0+) = 0,

z(Amax) = 0, ψ(Amax) = 0, λ(Amax) = λ0,
(S22)

where λ0 is the tension at the far field boundary.
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1.4.3 Numerical implementation

In order to solve the system of differential equations along with the boundary conditions, we used ‘bvp4c,’ a
boundary value problem solver in MATLAB. In all simulations, we fixed the total area of the membrane as A =
8πµm2 and set the transmembrane pressure to be zero (p = 0) to focus mainly on the mechanism of membrane-
actin interactions in dendritic spine formation. The mesh points on the domain were chosen such that starting from
A = 0+, the mesh size is very small and then increases moving toward the far field boundary A = Amax. To have
a sharp but smooth transition at the boundaries of the applied forces, we prescribed the forces using a hyperbolic
tangent function given as

f =
f0
2

[tanh(g(A−Aforce))], (S23)

where g is a constant and Aforce represents the area of the applied forces by actin filaments. Additionally, to get the
tubular protrusions from a flat membrane, we prescribed the height of the protrusion as an extra boundary condition
(z(0+) = zp) and calculated the magnitude of the applied force as an unknown parameter.

1.5 Analytical solutions

1.5.1 Analytical estimation for filopodia-shaped spines with an axial force

Let us consider a long tubular filopodium with radius r and height L has been pulled from a flat membrane with a
axial force Fz (Fig. S1A). Assuming that L� r, in the absence of spontaneous deviatoric curvature (Dm = 0) and
pressure (p = 0), the total free energy of the system (Eq. S1) can be written as

Efilopodium =

∫
ω
(κH2 + κD2 + λ)da− FzL. (S24)

For a tubular membrane (ignoring the spherical cap), H = D = 1
2r ,
∫
da = 2πrL, and thus the total energy

can be simplified as

Efilopodium = (
κ

2r2
+ λ)2πrL− FzL. (S25)

Now, we can find the equilibrium radius of the tube (r) and the corresponding force (Fz) by taking ∂Efilopodium/∂r =
0 and ∂Efilopodium/∂L = 0 and solving for the radius and force as [25–27]

r =

√
κ

2λ
and Fz = 2π

√
2λκ. (S26)

Based on the Eq. S26, the diameter of the filopodium and the magnitude of the applied forces depend on the
tension and the bending rigidity. For example, for a fixed bending rigidity, a large force is required to bend a stiff
membrane (large tension) and form a narrow filopodium. Interestingly, in contrast to the stubby spine (Fig.2C), the
magnitude of force to form a tubular filopodium is independent of the length of protrusion. In Eq. S26, we can also
find the tension based on the radius of the tubule and rewrite the axial force as

Fz =
2πκ

r
, (S27)

which indicates that to form a narrower filopodium, a larger axial force is required.
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1.5.2 Analytical estimation for thin-shaped spines with a uniform normal force density

Let us consider an idealized geometry of a thin-shaped spine as a sphere with radius R that is connected to a cylinder
with radius r and height l (Fig. S1B). Considering the case that a uniform normal force density, fn, is applied all
along the sphere and ignoring the interface between the sphere and the cylinder, we can write the total energy of
the system as Ethin = Esphere +Ecylinder. For the sphere, we know that H = 1/R, D = 0, and the total surface area
is Asphere = 4πR2. Considering the axial displacement from a flat membrane, we can write the free energy of the
spherical part of the thin-shaped spine as (assuming p = 0 and Dm = 0)

Esphere = (
κ

R2 + λ)4πR2 −
∫
−fn cos(φ)

(
L + R− R cos(φ)

)
da, (S28)

where da is the area element which can be written as
∫
da =

∫ π
0 2πR2 sin(φ)dφ. Eq. S28 gives

Esphere = (
κ

R2 + λ)4πR2 − 4π

3
R3fn. (S29)

For the cylindrical part of the thin-shaped spine, based on the previous section for the filopodia, we know that
H = D = 1/2r and r =

√
κ/2λ. Substituting these terms in the energy, we get

Ecylinder = 2π
√

2λκl. (S30)

Using Eqs. S29 and S30, we can write the total energy of the system as

Ethin = (
κ

R2 + λ)4πR2 − 4π

3
R3fn + 2π

√
2λκl. (S31)

Taking ∂Ethin/∂R = 0, we obtain

fn =
2λ

R
. (S32)

In our simulation, we are prescribing the area of the applied normal force (Aforce) based on the area of the spine
head (Aspine-head). Assuming that the spine head has a spherical shape in the area of the applied force, we can find
the radius of the sphere based on the area of spine head as

Aforce = Aspine-head = Asphere = 4πR2 → R =

√
Aspine-head

4π
. (S33)

Substituting Eq. S33 into Eq. S32, we have

fn = 4λ

√
π

Aspine-head
. (S34)

Based on Eq. S34, if we know the area of the spine head and the tension, we can estimate the required normal
force to form a thin-shaped spine. For example, according to Eq. S34, a smaller normal force density is required to
form a thin-shaped spine with a larger head. Similar to the formation of a filopodium (Eq. S26), the magnitude of
the normal force in Eq. S34 is also independent of the length of the spine.

Additionally, since the spine neck has a tubular shape, we can relate the tension to the radius of spine neck (Eq.
S26) and rewrite the normal force as
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R
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ϕ

Fz

2r

(A) (B)

l

L

Figure S1: (A) Schematic of a long filopodium with radius r and height L formed with an axial force Fz applied
along the prescribed area shown in blue. (B) An idealized geometry of a thin shaped spine. A sphere with radius
R is connected to a cylinder with radius r and height l. A uniform normal force density fn is applied all along the
sphere (Aforce = Asphere = Aspine-head).

fn =
κ

r2

√
π

Aspine-head
, (S35)

where r is the radius of the spine neck (Fig. S1B). Comparison of Eq. S27 and Eq. S35 shows that the required
axial force to form a tubular filopodium is proportional to 1/r while the normal force to form a thin-shaped spine
is proportional to 1/r2. This suggests that decreasing the neck diameter of a thin-shaped spines is harder and needs
a larger magnitude of a force compared to the filopodial-shaped spines.

1.5.3 Spontaneous deviatoric curvature and the radius of the spines neck

Let us consider a tubular membrane with radius r and height L that has been pulled from a flat membrane with an
axial force Fz and a spontaneous deviatoric curvature Dm along the neck region (Fig. S2A). Ignoring the spherical
cap, the total free energy of the system (Eq. S1) can be written as

Etube =
( κ

4r2
+ λ+ κ(

1

2r
−Dm)2

)
2πrL− Fzl. (S36)

To find the equilibrium radius of the tube (r) and the corresponding force (Fz), we take ∂Etube/∂r = 0 and
∂Etube/∂l = 0 and solve for the radius and force as

r =

√
κ

2(λ+ κD2
m)

and Fz = 2π
(√

2κ(λ+ κD2
m)− κDm

)
, (S37)

which reduces to Eq. S26 for zero spontaneous deviatoric curvature (Dm = 0). Based on Eq. S37, we can see that
the radius of a tubule decreases with increasing magnitude of spontaneous deviatoric curvature (Fig. 5A). This is
consistent with the previous study by Walani et al. where they showed that a tubular membrane gets narrower with
increasing strength of spontaneous deviatoric curvature [20]. In Fig. 5C, we plotted the magnitude of the axial
force as a function of tension and spontaneous deviatoric curvature. As can be seen, for fixed tension, axial force
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Figure S2: Schematic of (A) a tubular membrane with an axial force (Fz) and spontaneous deviatoric curvature
(Dm) along the neck with length l and (B) an idealized geometry of a thin-shaped spine with normal force density
(fn) along the head and spontaneous deviatoric curvature (Dm) along the neck.

has a local minimum shown by the red dashed line. By taking ∂Fz/∂D = 0, we can find the relationship between
the tension and spontaneous deviatoric curvature along the red line (Fig. 5C) is

λ = κD2
m, (S38)

and the magnitude of local minimum force is given by

Fz,min = 2πκDm, (S39)

which linearly depends on Dm.
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2 Supplementary figures

(A) (B) (C)

Fz = 2π 2κλ fn = 2λ 4π/Aforce

Figure S3: The magnitude of axial and normal force densities that are required to form (A) filopodia, (B) thin, and
(C) mushroom-shaped spines are independent of the length of the spines.

r = κ /(2λ)

Figure S4: (A) Neck radius of a mushroom-shaped spine as a function of tension for area of PSD/area of head =
0.2 (r =

√
κ/(2λ)) [25]. Three different shapes of mushroom-shaped spines are shown for low, intermediate, and

high tension. With increasing magnitude of tension, the mushroom-shaped spine flattens.
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(B)(A)

Figure S5: The area of PSD with respect to the area of the spine head characterizes the normal force densities that
are required to form a mushroom spine. (A) While the magnitude of normal force density in the spine head (red
squares) slightly increases with increasing ratio of PSD area to head area, the magnitude of normal force density in
the PSD (gray squares) decreases with increasing ratio of PSD area to head area. (B) A larger mushroom-shaped
spine (larger head volume) with a flatten head forms with increasing ratio of PSD area to head area.

(C)

(A)

r = κ /(2(λ + κD2
m))

Fz = 2π( 2κ(λ + κD2
m) − κDm)

(B)

(D)

Figure S6: (A) Analytical solution for the neck radius of a tubular membrane as functions of spontaneous de-
viatoric curvature and tension (r =

√
κ/(2(λ+ κD2

m)), Eq. S37). (B) The neck radius in panel A collapses
onto a single curve as a function of effective tension. (C) Analytical solution for the magnitude of an ax-
ial force needed to maintain a tubular protrusion as functions of spontaneous deviatoric curvature and tension
(Fz = 2π(

√
2κ(λ+ κD2

m)−κDm), Eq. S37). (D) The effective axial force in panel C collapses onto a single curve
as a function of effective tension.
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Table S2: Energy components and total energy for three different mechanisms of thin spine formation
Bending energy (pN.µm)∫

κH2da

Bending energy due
to deviatoric curvature (pN.µm)∫

κ(D −Dm)2da

Work done
by force (pN.µm)∫

f · (r− r0)da

Work done
by tension (pN.µm)∫

λda
Total energy (pN.µm)

Uniform normal force
density along head

6.2 6.2 -27.64 904.8 899.5

Uniform normal force density
along head and spontaneous

deviatoric curvature along neck
5.8 1.75 -16.35 254.34 245.5

Uniform axial force density
along head and spontaneous

deviatoric curvature along neck
5.28 1 -9.1 247.1 244.3

Table S3: Energy components and total energy for three different mechanisms of mushroom spine formation
Bending energy (pN.µm)∫

κH2da

Bending energy due
to deviatoric curvature (pN.µm)∫

κ(D −Dm)2da

Work done
by force (pN.µm)∫

f · (r− r0)da

Work done
by tension (pN.µm)∫

λda
Total energy (pN.µm)

Non-uniform normal force
density along head

4.92 4.92 -18.65 226.2 217.4

Non-uniform normal force density
along head and spontaneous

deviatoric curvature along neck
513 4.29 -17.43 139.2 131
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