SAl. Boltzmann Kinetic Equation in Curvilinear
Coordinates and Curved Spaces

In the absence of an external force, a particle has a constant velocity and moves
along a straight line in Euclidean space according to the 1st law of Newton. That
is, time derivatives of the particle position and the velocity vectors are described by

x=v, v=0 (A.1)

where x and v are the position and velocity vectors, respectively. If we express the
velocity vector in a curvilinear coordinate system, we have

v =0'gi(q) (A.2)
Therefore,
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where in the above we have used the definition v/ = ¢7.
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we have, by rearranging dummy indices
v=0 — d'g; +vv kl—‘zkgz =0 (A.5)
Therefore, there is an effective acceleration (inertial force) in the space of coordi-
nates, namely
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Based on the properties above, we are ready to write the Boltzmann equation
in curvilinear coordinates,
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where N = N(q, v,t) denotes the number of particles inside a small pocket ((x%, z°+
dz?), (v', v+ dv?); i = 1, 2, 3) of fluid of volume J(q). Q = Q(q, v, t) is the collision
term as discussed in the text, Eq. 14 satisfying local mass and momentum conservaton
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/dT)Q(q,T),t) =0, /d@v’n(q,@,t) =0, (A.8)

where the integral operator above is defined as [dv = [ dvtdv?dv®. Substituting
(A.6) into (A.7), we get
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Define a particle density function
J(q)f(q,v,t) = N(q,0,1) (A.10)

then we have the hydrodynamic moments specified below

/va q,0,t) = /dvf q,0,t) = J(q)p(g,t)
/dvv N(q,v,t) /dvv flq,0,t) = J(q)p(q,t)u'(q,t) (A.11)

Taking the moment integral of the Boltzmann equation (A.9), and using the
collision properties of (A.8), we obtain the two continuity equations, corresponding
to mass and momentum conservations respectively
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(A.11) we get the mass continuity equation as follows

/ kl"; V) = 0 via integration by parts, and using definition in

i(qu”) =0 (A.13)
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or in the more familiar form

0
Ja -(Jpu') =0 (A.14)

since the volume J is not dependent on time .
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Integrate by parts, and use 6UJ = (51
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Hence, the second equation in (A.12) becomes
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O(pu') + = - (JI7) + T4 17 = 0 (A.15)
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where the momentum flux tensor I1¥ = I1%(q, t) is defined by
4 = /dz‘;vivjf(q,@,t) (A.16)

Eqn.(A.15) is known as the Cauchy’s transport equation.

We can separate the momentum flux tensor into two parts associated, re-
spectively, to the equilibrium and the non-equilibrium parts of the distributions
flg,v,t) = f(q,v,t) + f*(q,v,t), so that I1¥(q,t) = 11¥°(q,t) + II9:"¢4(q, t).
The equilibrium distribution is given by the Maxwell-Boltzmann form,
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where U = v — u and 6 is the temperature. In terms of curvilinear coordinates,

U?=U-U=U'g-U'g; = U'g;;U’

[ = pW expl— (A.17)

Hence, we can rewrite (A.17) in terms of curvilinear coordinates below
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and the normalization factor W = 1/,/(207)3det[¢g"]. Here, the inverse metric
tensor [¢"7] is defined such that g"*gx; = 6 in differential geometry. det[g"/] is the
determinant of [¢*]. Using a few basic properties of Gaussian integral,

[ = pW expl— (A.18)

I
/dUW exp[—%] =1
I
/dUW UkUlexp[—%] = g"0
/dUW Ukigkz .. Uk ep[— QZJ;]GU ]=0, n=oddnumber (A.19)

we immediately obtain from (A.16) and (A.18) that
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Therefore, at the Euler order, in which the momentum flux tensor only includes the
equilibrium contribution, eqn.(A.15) reduces to
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More explicitly,
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However, since the underlying space is “flat” (Euclidean), the metric tensor obeys
the following property

Substituting (A.23) into eqn.(A.22), we arrive at a more standard form of the Euler
equation,
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with the pressure defined by an ideal gas equation of state, p = p6.

SA2. Derivation of the Navier-Stokes Equations in
General Coordinates

To derive the Navier-Stokes hydrodynamics up to the viscous order, we use the
Chapman-Enskog expansion procedure Eq. 28,
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Here € (<< 1) denotes a small number. Thus, the Boltzmann equation (A.9) leads
to the following two equations,
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and
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where, for simplicity, in the above we have used the BGK collision operator form €2 =
—(N — N¢?)/7 (Eq.24). Taking the mass and momentum moments over (B.1), and
use the properties in (A.20) as well as conservation of mass and momentum by



the collision in (A.8), we immediately obtain the leading (Euler) hydrodynamics as
given by (A.14) and (A.24),
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with an ideal gas equation of state, p = p#.
Eqn.(B.1) can be inverted to give,
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With the definition of particle density distribution function (A.10), N(q,v,t) =
J(q)f(q,v,t), and J depends on ¢ only, hence eqn.(B.4) is equivalent to
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With (B.3), it is easily checked via straightforward algebra that N() (and f())
gives vanishing mass and momentum moments, namely

/dz—;N(U(q,@,t) =0, /dm\rm(q,@,@ =0

On the other hand, taking the momentum flux moment, we have from (B.4) the
following,

JIT9:mee = /d@vivjN(l)
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The last term in (B.6) above can be further simplified below,
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Substituting (B.7) into (B.6), we obtain
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JIImed = — T{/d@u%ﬂ [0, N1 4+ W(U’“Neq)} (B.8)
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Or equivalently, we have
0

JHij,neq _ 7T{Jat0Hij,eq + qu(JQijk,eq) + J( };lek:l,eq + Fi[@ikl,eq)} (Bg)



where the equilibrium heat flux Q“*¢ is defined as
Qiihed = /d@vivjkaeq (B.10)
The integration (B.10) is straightforward to perform with f¢? (given by (A.18)),
and it yields
QR = pA(guk + gFul 4 gFud) + putu u® (B.11)
Therefore, together with (A.20), eqn.(B.9) becomes
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Next, let us take into account the properties of the metric tensor in the flat
space, these are

aiquij + g’ + Filgil =0
0
%(Jg]k) + Jrklg 0
9 i
a—qk(Jg’“ ) + JThg" =0 (B.13)

Then we can further simply (B.12) to
JIet = — 7{J[g" 0y, (p0) + O, (pu'u )]
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For the purpose of deriving hydrodynamics for isothermal fluid, we set 8 = const,
in addition we substitute the Euler order relations from (B.3) for the terms with
Oy, , then after some straightforward algebra, eqn.(B.14) becomes
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Using the standard definition of covariant derivative in differential geometry,



together with the rate of strain definition as the symmetric form of velocity deriva-
tive,

59 = 57 = (g™l + g ly)
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then eqn.(B.15) further simplies to
I19me = —24,,5% (B.16)
where pu = 7pf is the dynamic viscosity.

Taking mass and momentum moments of eqn.(B.2), and the vanishing right-
hand side, we obtain
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Combining the first order hydrodynamics of (B.17) with that of the Euler order
(B.3), we finally arrive at the full Navier-Stokes hydrodynamics in a curvilinear
coordinate system
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with an ideal gas equation of state, p = pf. Eqns.(B.18) are in fact the mass conti-
nuity and the Navier-Stokes equation in coordinate-free operator forms

Op+ V- (pu) =0
O¢(pu) + V- (puu) = —Vp + V - (2u8S) (B.19)

SA3. Incompressibility in Curved Space with Underlying
Euclidean Metrics

The size of a volume element in a 32 single particle phase-space is denoted as Jpdqdy,
where dg = dq'dg®dg® and dv = dv'dv®dv®. Clearly, for a curvilinear coordinate
system, J, = J? = g, with g = det[g;;] being the determinant of the metric tensor,
and J = J(q) is the Jacobian of the curvilinear coordinates.

The transport of a particle phase-space density function ¢ = ¢(q,7,t), without
collision, follows a continuity equation in phase space,
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at(Jp@ + aiqi(*]p(bvz) + ﬁ(Jp‘bi)z) =0 (C-l)

Since a particle moves along a straight path (geodesics) for the underlying Euclidean
space according to the 1st law of Newton, we have (see Appendix A)

o' = —T% ik (C.2)



We can show that the motion of particles in phase-space is incompressible. Define
the velocity field in phase-space as,

X = (4,9) = (0, ) (C3)
then, the divergence of the velocity field in phase-space is given by
. 0 0
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Substitute (C.2) in eqn.(C.4), we get
V-X= 881 (Jpv*) — 581 (JpT0iv") (C.5)

But since both J, (= J?) and F;k are functions of ¢ only, the second term in (C.5)
becomes
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where the last equality in the above is due to the symmetry of the Christoffel symbol,
I‘;. = F}; ;- Furthermore, using the fundamental property
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then (C.6) becomes,
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the last equality is because %vi = 0. Plug the result of (C.7) into (C.5), hence we

have proved the incompressibility property of the velocity field in the phase-space.
That is,

. 0 0
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With the incompressibility property of the phase space velocity field, the conti-
nuity equation (C.1) takes on a form of the Vlasov equation,
8¢ ;09
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It is worth to point out, the incompressibility property of the phase-space ve-

== (Jp0") =0 (C.8)

locity field is an intrinsic property of the particle motion via Newtonian mechanics
in Euclidean space. Hence this is true in any coordinate systems whether Cartesian
or curvilinear. Nonetheless, it is useful to directly show that such a property is
preserved in a curvilinear coordinate system.



Lastly, it is also convenient to define a density function below,

f(g,v,t) = J(q)#(q,v,t)

so that hydrodynamic moments are given by simple integrations of v, for instance
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