
SA1. Boltzmann Kinetic Equation in Curvilinear

Coordinates and Curved Spaces

In the absence of an external force, a particle has a constant velocity and moves

along a straight line in Euclidean space according to the 1st law of Newton. That

is, time derivatives of the particle position and the velocity vectors are described by

ẋ = v, v̇ = 0 (A.1)

where x and v are the position and velocity vectors, respectively. If we express the

velocity vector in a curvilinear coordinate system, we have

v = vigi(q) (A.2)

Therefore,

v̇ = 0 → v̇igi + vi
∂gi

∂qj
vj = 0 (A.3)

where in the above we have used the definition vj = q̇j .

Since

∂gi

∂qj
=
∂gi

∂qj
· gkgk ≡ Γk

ijgk, (A.4)
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we have, by rearranging dummy indices

v̇ = 0 → v̇igi + vjvkΓi
jkgi = 0 (A.5)

Therefore, there is an effective acceleration (inertial force) in the space of coordi-

nates, namely

v̇i = −vjvkΓi
jk (A.6)

Based on the properties above, we are ready to write the Boltzmann equation

in curvilinear coordinates,

∂tN +
∂

∂qi
(viN) +

∂

∂vi
(v̇iN) = Ω (A.7)

where N ≡ N(q, v̄, t) denotes the number of particles inside a small pocket ((xi, xi + 
dxi), (vi, vi + dvi); i = 1, 2, 3) of fluid of volume J(q). Ω = Ω(q, v̄, t) is the collision 
term as discussed in the text, Eq. 14 satisfying local mass and momentum conservaton 
laws ∫

dv̄Ω(q, v̄, t) = 0,

∫
dv̄viΩ(q, v̄, t) = 0, (A.8)

where the integral operator above is defined as
∫
dv̄ ≡

∫
dv1dv2dv3. Substituting

(A.6) into (A.7), we get

∂tN +
∂

∂qi
(viN)− ∂

∂vi
(vjvkΓi

jkN) = Ω (A.9)

Define a particle density function

J(q)f(q, v̄, t) ≡ N(q, v̄, t) (A.10)

then we have the hydrodynamic moments specified below∫
dv̄N(q, v̄, t) = J(q)

∫
dv̄f(q, v̄, t) = J(q)ρ(q, t)∫

dv̄viN(q, v̄, t) = J(q)

∫
dv̄vif(q, v̄, t) = J(q)ρ(q, t)ui(q, t) (A.11)

Taking the moment integral of the Boltzmann equation (A.9), and using the

collision properties of (A.8), we obtain the two continuity equations, corresponding

to mass and momentum conservations respectively∫
dv̄{∂tN +

∂

∂qi
(viN)− ∂

∂vi
(vjvkΓi

jkN)} = 0∫
dv̄vi{∂tN +

∂

∂qj
(vjN)− ∂

∂vl
(vjvkΓl

jkN)} = 0 (A.12)

The term
∫
dv̄ ∂

∂vi (vjvkΓi
jkN) = 0 via integration by parts, and using definition in

(A.11) we get the mass continuity equation as follows

∂t(Jρ) +
∂

∂qi
(Jρui) = 0 (A.13)
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or in the more familiar form

∂tρ+
1

J

∂

∂qi
(Jρui) = 0 (A.14)

since the volume J is not dependent on time t.

Integrate by parts, and use ∂vi

∂vj = δij ,∫
dv̄vi

∂

∂vl
(vjvkΓl

jkN) = −
∫
dv̄vjvkΓi

jkN

Hence, the second equation in (A.12) becomes

∂t(ρu
i) +

1

J

∂

∂qj
(JΠij) + Γi

jkΠjk = 0 (A.15)

where the momentum flux tensor Πij = Πij(q, t) is defined by

Πij ≡
∫
dv̄vivjf(q, v̄, t) (A.16)

Eqn.(A.15) is known as the Cauchy’s transport equation.

We can separate the momentum flux tensor into two parts associated, re-

spectively, to the equilibrium and the non-equilibrium parts of the distributions

f(q, v̄, t) = feq(q, v̄, t) + fneq(q, v̄, t), so that Πij(q, t) = Πij,eq(q, t) + Πij,neq(q, t).

The equilibrium distribution is given by the Maxwell-Boltzmann form,

feq = ρW exp[−U2

2θ
] (A.17)

where U ≡ v − u and θ is the temperature. In terms of curvilinear coordinates,

U2 = U ·U = U igi · U jgj = U igijU
j

Hence, we can rewrite (A.17) in terms of curvilinear coordinates below

feq = ρW exp[−gijU
iU j

2θ
] (A.18)

and the normalization factor W = 1/
√

(2θπ)3det[gij ]. Here, the inverse metric

tensor [gij ] is defined such that gikgkj = δij in differential geometry. det[gij ] is the

determinant of [gij ]. Using a few basic properties of Gaussian integral,∫
dUW exp[−gijU

iU j

2θ
] = 1∫

dUW UkU lexp[−gijU
iU j

2θ
] = gklθ∫

dUW Uk1Uk2 · · ·Uknexp[−gijU
iU j

2θ
] = 0, n = odd number (A.19)

we immediately obtain from (A.16) and (A.18) that

ρ =

∫
dv̄feq, ρui =

∫
dv̄vifeq,

Πij,eq =

∫
dv̄vivjfeq = gijρθ + ρuiuj (A.20)
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Therefore, at the Euler order, in which the momentum flux tensor only includes the

equilibrium contribution, eqn.(A.15) reduces to

∂t(ρu
i) +

1

J

∂

∂qj
(JΠij,eq) + Γi

jkΠjk,eq = 0 (A.21)

More explicitly,

∂t(ρu
i) +

1

J

∂

∂qj
(J [gijρθ + ρuiuj ]) + Γi

jk[gjkρθ + ρujuk] = 0 (A.22)

However, since the underlying space is “flat” (Euclidean), the metric tensor obeys

the following property

1

J

∂

∂qj
(Jgij) + Γi

jkg
jk = 0 (A.23)

Substituting (A.23) into eqn.(A.22), we arrive at a more standard form of the Euler

equation,

∂t(ρu
i) +

1

J

∂

∂qj
(Jρuiuj) + Γi

jkρu
juk = −gij ∂p

∂qj
(A.24)

with the pressure defined by an ideal gas equation of state, p = ρθ.

SA2. Derivation of the Navier-Stokes Equations in
General Coordinates

To derive the Navier-Stokes hydrodynamics up to the viscous order, we use the

Chapman-Enskog expansion procedure Eq. 28,  

∂t = ε∂t0 + ε2∂t1 ;
∂

∂qi
= ε

∂

∂qi
;

∂

∂vi
= ε

∂

∂vi

and

N = Neq + εN (1) + ε2N (2) + · · ·

Here ε (<< 1) denotes a small number. Thus, the Boltzmann equation (A.9) leads

to the following two equations,

∂t0N
eq +

∂

∂qi
(viNeq)− ∂

∂vi
(vjvkΓi

jkN
eq) = −1

τ
N (1) (B.1)

and

∂t1N
eq + ∂t0N

(1) +
∂

∂qi
(viN (1))− ∂

∂vi
(vjvkΓi

jkN
(1)) = −1

τ
N (2) (B.2)

where, for simplicity, in the above we have used the BGK collision operator form Ω =
−(N − Neq)/τ  ( E q . 2 4 ) .  Taking the mass and momentum moments over (B.1), and 
use the properties in (A.20) as well as conservation of mass and momentum by
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the collision in (A.8), we immediately obtain the leading (Euler) hydrodynamics as

given by (A.14) and (A.24),

∂t0ρ +
1

J

∂

∂qi
(Jρui) = 0

∂t0(ρui) +
1

J

∂

∂qj
(Jρuiuj) + Γi

jkρu
juk = −gij ∂p

∂qj
(B.3)

with an ideal gas equation of state, p ≡ ρθ.
Eqn.(B.1) can be inverted to give,

N (1) = −τ [∂t0N
eq +

∂

∂qi
(viNeq)− ∂

∂vi
(vjvkΓi

jkN
eq)] (B.4)

With the definition of particle density distribution function (A.10), N(q, v̄, t) =

J(q)f(q, v̄, t), and J depends on q only, hence eqn.(B.4) is equivalent to

f (1) = −τ [∂t0f
eq +

1

J

∂

∂qi
(viJfeq)− ∂

∂vi
(vjvkΓi

jkf
eq)] (B.5)

With (B.3), it is easily checked via straightforward algebra that N (1) (and f (1))

gives vanishing mass and momentum moments, namely∫
dv̄N (1)(q, v̄, t) = 0,

∫
dv̄viN (1)(q, v̄, t) = 0

On the other hand, taking the momentum flux moment, we have from (B.4) the

following,

JΠij,neq ≡
∫
dv̄vivjN (1)

= −τ
∫
dv̄vivj [∂t0N

eq +
∂

∂qk
(vkNeq)− ∂

∂vk
(vlvmΓk

lmN
eq)] (B.6)

The last term in (B.6) above can be further simplified below,

τ

∫
dv̄vivj

∂

∂vk
(vlvmΓk

lmN
eq) = −τ

∫
dv̄vlvmΓk

lmN
eq ∂

∂vk
(vivj)

= −τ
∫
dv̄vlvm(Γi

lmv
j + Γj

lmv
i)Neq (B.7)

Substituting (B.7) into (B.6), we obtain

JΠij,neq = − τ{
∫
dv̄vivj [∂t0N

eq +
∂

∂qk
(vkNeq)] (B.8)

+

∫
dv̄vlvm(Γi

lmv
j + Γj

lmv
i)Neq}

Or equivalently, we have

JΠij,neq = −τ{J∂t0Πij,eq +
∂

∂qk
(JQijk,eq) + J(Γi

klQ
jkl,eq + Γj

klQ
ikl,eq)} (B.9)
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where the equilibrium heat flux Qijk,eq is defined as

Qijk,eq =

∫
dv̄vivjvkfeq (B.10)

The integration (B.10) is straightforward to perform with feq (given by (A.18)),

and it yields

Qijk,eq = ρθ(gijuk + gjkui + gkiuj) + ρuiujuk (B.11)

Therefore, together with (A.20), eqn.(B.9) becomes

JΠij,neq = − τ{J [gij∂t0(ρθ) + ∂t0(ρuiuj)]

+
∂

∂qk
[Jρθ(gijuk + gjkui + gkiuj) + Jρuiujuk]

+Γi
kl[Jρθ(g

jkul + gkluj + gljuk) + Jρujukul]

+Γj
kl[Jρθ(g

ikul + gklui + gliuk) + Jρuiukul]} (B.12)

Next, let us take into account the properties of the metric tensor in the flat

space, these are

∂

∂qk
gij + Γi

klg
jl + Γj

klg
il = 0

∂

∂qk
(Jgjk) + JΓj

klg
kl = 0

∂

∂qk
(Jgki) + JΓi

klg
kl = 0 (B.13)

Then we can further simply (B.12) to

JΠij,neq = − τ{J [gij∂t0(ρθ) + ∂t0(ρuiuj)]

+ gij
∂

∂qk
(Jρθuk) + Jgjk

∂

∂qk
(ρθui) + Jgki

∂

∂qk
(ρθuj)

+
∂

∂qk
(Jρuiujuk) + Γi

klJρθg
jkul + Γi

klJρu
jukul

+ Γj
klJρθg

kiul + Γj
klJρu

iukul} (B.14)

For the purpose of deriving hydrodynamics for isothermal fluid, we set θ = const,

in addition we substitute the Euler order relations from (B.3) for the terms with

∂t0 , then after some straightforward algebra, eqn.(B.14) becomes

Πij,neq = −τρθ{gik(
∂uj

∂qk
+ Γj

klu
l) + gjk(

∂ui

∂qk
+ Γi

klu
l)} (B.15)

Using the standard definition of covariant derivative in differential geometry,

ui|k ≡
∂ui

∂qk
+ Γi

klu
l
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together with the rate of strain definition as the symmetric form of velocity deriva-

tive,

Sij = Sji ≡ 1

2
(gjkui|k + gikuj |k)

then eqn.(B.15) further simplies to

Πij,neq = −2µSij (B.16)

where µ ≡ τρθ is the dynamic viscosity.

Taking mass and momentum moments of eqn.(B.2), and the vanishing right-

hand side, we obtain

∂t1ρ = 0

∂t1(ρui) =
1

J

∂

∂qj
(2JµSij) + 2Γi

jkµS
jk (B.17)

Combining the first order hydrodynamics of (B.17) with that of the Euler order

(B.3), we finally arrive at the full Navier-Stokes hydrodynamics in a curvilinear

coordinate system

∂tρ +
1

J

∂

∂qi
(Jρui) = 0

∂t(ρu
i) +

1

J

∂

∂qj
(Jρuiuj) + Γi

jkρu
juk = −gij ∂p

∂qj

+
1

J

∂

∂qj
(2JµSij) + 2Γi

jkµS
jk (B.18)

with an ideal gas equation of state, p ≡ ρθ. Eqns.(B.18) are in fact the mass conti-

nuity and the Navier-Stokes equation in coordinate-free operator forms

∂tρ + ∇ · (ρu) = 0

∂t(ρu) + ∇ · (ρuu) = −∇p+∇ · (2µS) (B.19)

SA3. Incompressibility in Curved Space with Underlying

Euclidean Metrics

The size of a volume element in a 32 single particle phase-space is denoted as Jpdqdv̄,

where dq ≡ dq1dq2dq3 and dv̄ ≡ dv1dv2dv3. Clearly, for a curvilinear coordinate

system, Jp = J2 = g, with g ≡ det[gij ] being the determinant of the metric tensor,

and J = J(q) is the Jacobian of the curvilinear coordinates.

The transport of a particle phase-space density function φ = φ(q, v̄, t), without

collision, follows a continuity equation in phase space,

∂t(Jpφ) +
∂

∂qi
(Jpφv

i) +
∂

∂vi
(Jpφv̇

i) = 0 (C.1)

Since a particle moves along a straight path (geodesics) for the underlying Euclidean

space according to the 1st law of Newton, we have (see Appendix A)

v̇i = −Γi
jkv

jvk (C.2)
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We can show that the motion of particles in phase-space is incompressible. Define

the velocity field in phase-space as,

Ẋ ≡ (q̇, ˙̄v) = (v̄, ˙̄v) (C.3)

then, the divergence of the velocity field in phase-space is given by

∇ · Ẋ ≡ ∂

∂qi
(Jpv

i) +
∂

∂vi
(Jpv̇

i) (C.4)

Substitute (C.2) in eqn.(C.4), we get

∇ · Ẋ =
∂

∂qi
(Jpv

i)− ∂

∂vi
(JpΓi

jkv
jvk) (C.5)

But since both Jp (= J2) and Γi
jk are functions of q only, the second term in (C.5)

becomes

∂

∂vi
(JpΓi

jkv
jvk) = JpΓi

jk

∂

∂vi
(vjvk) = JpΓi

jk[vj
∂vk

∂vi
+ vk

∂vj

∂vi
]

= Jp[Γi
jiv

j + Γi
ikv

k] = 2JpΓi
ijv

j (C.6)

where the last equality in the above is due to the symmetry of the Christoffel symbol,

Γi
jk = Γi

kj . Furthermore, using the fundamental property

Γi
ij =

1

J

∂J

∂qj

then (C.6) becomes,

∂

∂vi
(JpΓi

jkv
jvk) = 2JpΓi

ijv
j = 2J

∂J

∂qj
vj

=
∂Jp
∂qj

vj =
∂

∂qj
(Jpv

j) (C.7)

the last equality is because ∂
∂qj v

j = 0. Plug the result of (C.7) into (C.5), hence we

have proved the incompressibility property of the velocity field in the phase-space.

That is,

∇ · Ẋ =
∂

∂qi
(Jpv

i) +
∂

∂vi
(Jpv̇

i) = 0 (C.8)

With the incompressibility property of the phase space velocity field, the conti-

nuity equation (C.1) takes on a form of the Vlasov equation,

∂tφ+ vi
∂φ

∂qi
+ v̇i

∂φ

∂vi
= 0 (C.9)

It is worth to point out, the incompressibility property of the phase-space ve-

locity field is an intrinsic property of the particle motion via Newtonian mechanics

in Euclidean space. Hence this is true in any coordinate systems whether Cartesian

or curvilinear. Nonetheless, it is useful to directly show that such a property is

preserved in a curvilinear coordinate system.
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Lastly, it is also convenient to define a density function below,

f(q, v̄, t) ≡ J(q)φ(q, v̄, t)

so that hydrodynamic moments are given by simple integrations of v̄, for instance

ρ =

∫
dv̄f =

∫
dv1dv2dv3f ; ρui =

∫
dv̄vif =

∫
dv1dv2dv3vif




