frontiers

Supplementary Material

1 Supplementary Data

1.1. General procedures 1
2.1. Procedure A for oxiran $\mathbf{5 , 7 - 8}$ opening by secondary or primary amine 2
2.2. Procedure B for oxiran 6 opening by secondary or primary amine 2
2.3. Spectroscopic properties of compounds 10-12 14-16, 18-20, 22-24 2
3.1. Procedure C for hydrogenation and N-Boc protection of γ-amino- β-hydroxyphosphonates. 7
3.2. Procedure D for hydrogenation of monoesters of hydroxyalkylphosphonic acids 7
3.3. Spectroscopic properties of compounds 26-28 7
4.1. Procedure F for oxiran 5-8 opening by HBr 8
4.2. Spectroscopic properties of compounds $\mathbf{3 2 - 3 5}$ 8
5.1. Procedure I for hydrogenation and N-Boc protection of β-azido- γ-hydroxyphosphonates 10
5.2. Spectroscopic properties of compounds 40-42 10
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}$ NMR Spectra of Compounds 12

1.1. General informations

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR and ${ }^{31} \mathrm{P}$ NMR spectra were performed on Bruker ASCEND 400 (400 MHz), Bruker ASCEND $600(600 \mathrm{MHz})$, Varian Mercury (300 MHz), spectrometers, as is noted. The 2D and 1D selective NMR spectra were recorded on Bruker ASCEND $600(600 \mathrm{MHz})$ or Bruker ASCEND $400(400 \mathrm{MHz})$ spectrometers. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR were expressed in parts per million downfield from tetramethylsilane (TMS) as an internal standard ($\delta=0$) in CDCl_{3}. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR were expressed in parts per million downfield and upfield from CDCl_{3} as an internal standard ($\delta 77.16$) or $\mathrm{CD}_{3} \mathrm{OD}(\delta 49.00)$ or $\mathrm{CF}_{3} \mathrm{COOD}(\delta 164.2)$ or traces of solvent. Chemical shifts of ${ }^{19} \mathrm{~F}$ NMR were expressed in parts per million upfield from CFCl_{3} as an internal standard (δ 0) in CDCl_{3}. Chemical shifts of ${ }^{31} \mathrm{P}$ NMR were expressed in parts per million in CDCl_{3}. The yields of reaction and purity of the obtained products as well as diastereoisomers ratio (in crude reaction mixture) were conveniently evaluated by ${ }^{19} \mathrm{~F}$ or/and ${ }^{31} \mathrm{P}$ NMR in CDCl_{3} or by GC-MS method. GCMS spectra were performed on Varian GC-MS 4000 spectrometer (conditions: flow rate of 1 $\mathrm{mL} / \mathrm{min}$, injector temperature $=220^{\circ} \mathrm{C}$, column oven temperature $40^{\circ} \mathrm{C}(3 \mathrm{~min}) \rightarrow 15^{\circ} \mathrm{C} / \mathrm{min} \rightarrow$
$280{ }^{\circ} \mathrm{C}(10 \mathrm{~min})$, using chloroform as the solvent. MS (ESI) spectra were performed on ZQ4000 Waters Mass Spectrometer. High-resolution mass spectra were recorded by electron spray (MS-ESI) techniques using QToF Impact HD Bruker spectrometer. IR analysis on spectrometer JASCO FT/IR4600 were performed. Reagent grade chemicals were used and solvents were dried by refluxing with $\mathrm{CaH}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and distilled under an argon atmosphere. All moisture sensitive reactions were carried out under an argon atmosphere using oven-dried glassware. TLC was performed on Merck Kieselgel $60-\mathrm{F}_{254}$ with $\mathrm{EtOAc} / \mathrm{hexane}$ or $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ as developing systems, and products were detected by inspection under UV light (254 nm) and a standard procedure (solution of phosphomolybdenic acid or KMnO_{4}). Merck Kieselgel 60 (230-400 mesh) was used for column chromatography. All starting materials (with an exception of Selectfluor) were supplied by Sigma Aldrich. Selectfluor was supplied by Apollo Scientific (UK). Sodium hydride as 60% dispersion in mineral oil was used. Absolute ethanol was stored under argon and over molecular sieves $3 \AA$. All moisture sensitive reactions were carried out under argon atmosphere using oven dried glassware. Compounds from methyl series $\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}\right)$ have to be carefully evaporated, dried and stored at around $4{ }^{\circ} \mathrm{C}$. The etheral solution of diazomethane was prepared as described [52]. Compounds $\mathbf{1}$ [53], 2 [54], $\mathbf{3}$ [55], 4 [56] were prepared as described. The NMR data for $\mathbf{2 5}$ [35] was in good agreement.

1.2. Theoretical calculations

The quantum mechanical calculations of potential energy under vacuum at the M06/6-31+G** [57, 58] level of theory have been performed using the GAUSSIAN09 program,[59] in order to systematically search for possible conformations. The vibrational frequencies were calculated using the same method, and then their positivity was applied to confirm that each of the calculated structures corresponds to a minimum on the potential energy surface. To simplified the calculations, the ethoxyl substituents were replaced with methoxyl substituents for which several conformations were calculated with the aim of choosing the global minimum-energy structure.

2.1. General procedure (procedure A) for oxiran 5,7-8 opening by secondary or primary amine

General procedure (procedure A) for oxiran 5,7-8 ring opening by secondary or primary amine To the mixture of secondary or primary amine (0.48 mmol) and triethylamine ($56 \mu \mathrm{~L}, 40 \mathrm{mg}, 0.4 \mathrm{mmol}$) dissolved in EtOH (2 mL) epoxide $\mathbf{5 - 8}(0.4 \mathrm{mmol})$ was added. Next, the reaction mixture was heated in an oil bath at $60^{\circ} \mathrm{C}$ during 24-60 h (monitoring by TLC). Then, reaction mixture was evaporated and purified by flash column chromatography (1 cm layer of silica gel) with $\mathrm{CHCl}_{3} \rightarrow 5 \%$ $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ (v:v) to give appropriate amino alcohols 9-12, 17-24.

2.2. General procedure (procedure B) for oxiran 6 opening by secondary or primary amine

To the mixture of secondary or primary amine (2 mmol) and triethylamine ($279 \mu \mathrm{~L}, 200 \mathrm{mg}, 2 \mathrm{mmol}$) dissolved in $\mathrm{EtOH}(2 \mathrm{~mL})$ epoxide $\mathbf{6}(0.4 \mathrm{mmol})$ was added. Next, the reaction mixture was heated in an oil bath at $60^{\circ} \mathrm{C}$ during $24-60 \mathrm{~h}$ (monitoring by TLC). Then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and aqueous $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with aqueous sodium bicarbonate, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The residue was purified by flash column chromatography (1 cm layer of silica gel) with $\mathrm{CHCl}_{3} \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ (v:v) to give a mixture of 6, appropriate aminoalcohols 13-16 and allylic alcohol 25.
2.3. Spectroscopic properties of compounds 10-12, 14-16, 18-20 and 22-24
rac Diethyl ((1R,2R)-3-(benzylamino)-1-fluoro-2-hydroxy-2-methylpropyl)phosphonate (rac10a) Procedure $\mathrm{A}\left(\mathrm{BnNH}_{2}, \mathrm{TEA}\right)$, major isomer. Isolated as a mixture with 10b, which could not be separated by the chromatography techniques employed in this study; transparent oil ($107 \mathrm{mg}, 80 \%$, 3:1 d.r.): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.35-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.69(\mathrm{dd}, J=44.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHF), $4.27-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.04(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.63(\mathrm{dd}, J=$ 12.6, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $1.39-1.33\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 139.08, 128.52, 128.24, 127.33 ($4 \mathrm{x} \mathrm{s}, \mathrm{Ph}$), 92.48 (dd, $J=187.2,162.8 \mathrm{~Hz}, C \mathrm{FP}$), 72.01 (dd, $J=18.7$, $2.9 \mathrm{~Hz}, \mathrm{COH}), 63.73\left(\mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 62.81\left(\mathrm{~d}, J=6.7 \mathrm{~Hz} \mathrm{OCH}_{2}\right), 54.59-54.29(\mathrm{~m}$, CN), $54.13\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 23.35\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.41\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.34(\mathrm{~d}, J=6.1$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-213.98(\mathrm{dd}, J=77.0,44.9 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.61(\mathrm{~d}, J=77.1 \mathrm{~Hz}, 1 \mathrm{P}) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=333.3[\mathrm{M}]^{+}$
rac Diethyl ((1R,2S)-3-(benzylamino)-1-fluoro-2-hydroxy-2-methylpropyl)phosphonate (rac 10b) minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.35-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.96(\mathrm{dd}, J=44.6,3.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHF}), 4.27-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.90(\mathrm{dd}, J=12.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH})$, $2.64(\mathrm{dd}, J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}), 1.39-1.33\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (377 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-210.74(\mathrm{dd}, J=71.5,44.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=17.69(\mathrm{~d}, J=71.6$ Hz).
rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1-phenylethyl)amino)propyl) phosphonate (rac 11a) and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1phenylethyl)amino)propyl)phosphonate (rac 11b) Procedure A ($\left.(S)-\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}_{2}, \mathrm{TEA}\right)$, major isomers: isolated as a mixture with 11 'a,b, which could not be separated by the chromatography techniques employed in this study; transparent oil ($111 \mathrm{mg}, 80 \%$, crude 11a:11b/11'a:11'b, 3:3/1:1, d.r.): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 4.65(\mathrm{dd}, J=44.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHF}), 4.63(\mathrm{dd}, J=44.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.34-4.14\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.12-3.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH})$, 3.97 (dt, $J=14.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} H), 3.79(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}), 3.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHMe}), 1.44-1.29\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.79,144.59(2 \mathrm{x}$ $\mathrm{s}, \mathrm{Ph}), 128.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{Ph}), 128.61,127.29,127.23,126.80$, $126.67(5 \mathrm{x} \mathrm{s}, \mathrm{Ph}), 92.80(\mathrm{dd}, J=$ $187.2,163.1 \mathrm{~Hz}, C \mathrm{FP}$), 92.74 (dd, $J=187.4,162.8 \mathrm{~Hz}, C \mathrm{FP}$), 72.03 (dd, $J=18.5,2.9 \mathrm{~Hz}, C O H$), 71.77 (dd, $J=18.9,2.5 \mathrm{~Hz}, C \mathrm{OH}), 63.80\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 63.74(\mathrm{~d}, J=7.1 \mathrm{~Hz} \mathrm{OCH} 2), 62.91$ (d, $\left.J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 62.80\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 59.16\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 58.84\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 53.45-$ $53.01(\mathrm{~m}, 2 \times \mathrm{CN}), 24.25\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 23.97\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 23.15\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 23.11(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 16.50\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.44\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19}$ F NMR (377 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-213.63(\mathrm{dd}, J=77.5,44.8 \mathrm{~Hz}, 1 \mathrm{~F}),-214.06(\mathrm{dd}, J=77.4,44.9 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.72(\mathrm{~d}, J=77.6 \mathrm{~Hz}, 1 \mathrm{P}), 16.61(\mathrm{~d}, J=77.4 \mathrm{~Hz}, 1 \mathrm{P}) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=348.1$ $[\mathrm{M}+\mathrm{H}]^{+}$
rac Diethyl ((1R,2S)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1-phenylethyl)amino)propyl) phosphonate (rac 11'a) and diethyl ((1S,2R)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1phenylethyl)amino)propyl) phosphonate (rac 11'b) Minor isomers: 11'a:11'b (1:1, d.r.): ${ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=18.06(\mathrm{~d}, J=71.0 \mathrm{~Hz}, 1 \mathrm{P}), 17.61(\mathrm{~d}, J=72.5 \mathrm{~Hz}, 1 \mathrm{P}) .{ }^{19} \mathrm{~F}$ NMR (377 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-210.47(\mathrm{ddd}, J=72.3,44.8,1.5 \mathrm{~Hz}, 1 \mathrm{~F}),-210.49(\mathrm{ddd}, J=70.8,44.4,1.5 \mathrm{~Hz}, 1 \mathrm{~F})$.
rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-methyl-3-(methyl((R)-1-phenylethyl)amino) propyl)phosphonate (rac 12a) and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-methyl-3-(methyl((R)-1phenylethyl)amino)propyl)phosphonate (rac 12b) Procedure A $((R)-\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}(\mathrm{Me}), \mathrm{TEA})$,
major isomers: isolated as a mixture with $\mathbf{1 2}^{\mathbf{\prime}} \mathbf{a}, \mathbf{b}$, which could not be separated by the chromatography techniques employed in this study; transparent oil ($120 \mathrm{mg}, 83 \%$), crude 12a:12b/12'a:12'b, 3:3/1:1, d.r.): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.54-7.48$ (m, 4H, Ph), $7.42-$ $7.33(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 4.67$ (ddd, $J=44.7,4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHFP}), 4.62$ (ddd, $J=45.7,14.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, CHFP), $4.30-4.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{CHCH}_{3}\right), 4.13-4.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.04-3.90(\mathrm{~m}, 2 \mathrm{H}$, OCH_{2}), $3.91-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.87-2.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}), 2.84(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.78$ (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $2.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.68(\mathrm{~d}, J=6.7$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43-1.36\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.34-1.27\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}): $\delta=135.99,129.20,129.03,128.04(4 \mathrm{x} \mathrm{s}, \mathrm{Ph}), 92.32$ (dd, $\left.J=187.8,166.3 \mathrm{~Hz}, C \mathrm{FP}\right), 92.10$ (dd, $J=188.4,163.6 \mathrm{~Hz}, C \mathrm{FP}), 72.01$ (d, $J=17.4 \mathrm{~Hz}, C O H), 71.67$ (d, $J=20.2 \mathrm{~Hz}, C O H), 63.57$ (d, $\left.J=7.6 \mathrm{~Hz}, C_{H C H}^{3}\right), 63.56\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, C H C H_{3}\right), 63.42\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 63.07(\mathrm{~d}, J=6.7$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 55.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, C \mathrm{~N}), 55.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, C \mathrm{~N}), 50.73\left(\mathrm{~s}, C \mathrm{HCH}_{3}\right), 50.71(\mathrm{~s}$, $\left.\mathrm{CHCH}_{3}\right), 43.32\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 41.34\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.75\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.70\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 21.96\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $21.94\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, C_{3}\right), 16.43\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.37-16.33\left(\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.31(\mathrm{~d}, J$ $\left.=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-213.42(\mathrm{dd}, J=79.9,45.8 \mathrm{~Hz}, 1 \mathrm{~F}),-213.43$ $(\mathrm{dd}, J=79.9,45.8 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=13.40(\mathrm{~d}, J=80.0 \mathrm{~Hz}, 1 \mathrm{P}), 16.11$ (br d, $J=78.2 \mathrm{~Hz}, 1 \mathrm{P}$). GC-MS (EI) $m / z=362.2[\mathrm{M}+\mathrm{H}]^{+}$.
rac Diethyl ((1R,2S)-1-fluoro-2-hydroxy-2-methyl-3-(methyl((R)-1-phenylethyl)amino) propyl) phosphonate (rac 12'a) and diethyl ((1S,2R)-1-fluoro-2-hydroxy-2-methyl-3-(methyl($(\mathbb{R})-1$ phenylethyl)amino)propyl)phosphonate (rac 12'b) Minor isomers: 12'a:12'b (1:1, d.r.): ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-215.41(\mathrm{dd}, J=78.3,44.7 \mathrm{~Hz}, 2 \mathrm{~F}) .{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ signals masked by major isomers.
rac Diethyl ((1R,2R)-3-(benzylamino)-1-fluoro-2-hydroxy-2-phenylpropyl)phosphonate (rac 14) Procedure $\mathrm{B}\left(\mathrm{BnNH}_{2}, \mathrm{TEA}\right)$. Isolated as a mixture with 6 and 25, which could not be separated by the chromatography techniques employed in this study ($\mathbf{6} / \mathbf{1 4 / 2 5}$ crude ratio: 50/20/30, NMR), slightly creamy-colored oil (rac 14, $32 \mathrm{mg}, 20 \%$; $2517 \mathrm{mg}, 28 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-$ $7.51(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}), 5.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.79(\mathrm{dd}, J=45.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.03-4.15(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.82-3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.59(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHPh}), 3.37(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHHPh), 3.32 (dd, $J=13.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.12 (dd, $J=13.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 1.23(\mathrm{td}, J=$ $\left.7.1,0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.02\left(\mathrm{td}, J=7.1,0.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR:} \delta=-212.15(\mathrm{dd}, J=$ 81.8, 45.0 Hz); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\delta=15.96(\mathrm{~d}, J=81.8 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=395.3[\mathrm{M}]^{+}$

[^0]rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-3-(methyl((R)-1-phenylethyl)amino)-2-phenylpropyl) phosphonate and rac diethyl ((1S,2S)-1-fluoro-2-hydroxy-3-(methyl((R)-1-phenylethyl)amino)-2phenylpropyl)phosphonate (rac 16a,b) Procedure $\mathrm{B}((R)-\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}(\mathrm{Me})$, TEA). Isolated as a mixture with 6 and 25, which could not be separated by the chromatography techniques employed in this study, oil 6/16a,b/25 with crude ratio 20/40/40\%, NMR) (rac16a,b $59 \mathrm{mg}, 35 \%$, 1:1, d.r.; 2519 $\mathrm{mg}, 32 \%):{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.65-7.55(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 12 \mathrm{H}), 5.02(\mathrm{dd}, J=$ $46.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.94(\mathrm{dd}, J=46.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.15\left(\mathrm{dq}, J=7.1,0.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $4.13\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.99-3.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}), 3.84\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.64-$ $3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H), 2.94\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.95-2.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H), 1.28(\mathrm{td}, J=7.1$, $0.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.27\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.19\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-211.32(\mathrm{dd}, J=80.0,44.6 \mathrm{~Hz}, 1 \mathrm{~F}),-211.60(\mathrm{dd}, J=79.0,44.5 \mathrm{~Hz}, 1 \mathrm{~F})$; ${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.84(\mathrm{~d}, J=80.9 \mathrm{~Hz}), 15.97(\mathrm{~d}, J=81.3 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=$ 408.4 [M-Me] ${ }^{+}$.
rac Ethyl hydrogen ((2R,3S)-4-(benzylamino)-2-fluoro-3-hydroxy-3-phenylbutan-2yl)phosphonate (rac 18) Procedure $\mathrm{A}\left(\mathrm{BnNH}_{2}, \mathrm{TEA}\right)$, reaction time 60 h ; white solid ($127 \mathrm{mg}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44-7.20(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 6.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{OH}), 4.05(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.95-3.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHH}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.17(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.06\left(\mathrm{dd}, J=25.2,11.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=142.09(\mathrm{~d}, J$ $=9.3 \mathrm{~Hz}, \mathrm{Ph}), 140.11,129.41,128.75,128.39,128.07,127.77(6 \mathrm{x} \mathrm{s}, \mathrm{Ph}), 126.04(\mathrm{~d}, J=3.1 \mathrm{~Hz}, \mathrm{Ph})$, $98.03(\mathrm{dd}, J=188.2,150.8 \mathrm{~Hz}, C \mathrm{FP}), 77.29(\mathrm{~d}, J=11.2 \mathrm{~Hz}, C \mathrm{OH}), 62.48(\mathrm{dd}, J=6.4,3.0 \mathrm{~Hz}$, OCH_{2}), $52.68\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 51.99(\mathrm{~s}, \mathrm{CN}), 20.07\left(\mathrm{dd}, J=20.9,3.2 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 16.85(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-170.16(\mathrm{dq}, J=73.0,25.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=15.50\left(\mathrm{~d}, J=72.9 \mathrm{~Hz}\right.$). MS (ESI) calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{FNO}_{4} \mathrm{P} 382.151$, found 382.30.

Ethyl hydrogen ((2R,3S)-2-fluoro-3-hydroxy-3-phenyl-4-(((S)-1-phenylethyl)amino)butan-2yl)phosphonate (rac 19a) and ethyl hydrogen ((2S,3R)-2-fluoro-3-hydroxy-3-phenyl-4-(((S)-1-phenylethyl)amino)butan-2-yl)phosphonate (rac 19b) Procedure A ($(S)-\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}_{2}$, TEA), reaction time 60 h ; white solid ($123 \mathrm{mg}, 78 \%$, 1:1, d.r.): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.45-7.24$ $(\mathrm{m}, 20 \mathrm{H}, \mathrm{Ph}), 4.24-4.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.04-3.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.80(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$, CHH), $3.69(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.96(\mathrm{dd}, J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 2.91(\mathrm{dd}, J=13.2,2.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH} H), 2.37(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 1.68\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} 3), 1.29$ $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.16(\mathrm{~d}, \mathrm{~d}, J=25.2,11.4 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.04\left(\mathrm{dd}, J=25.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=142.81(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, Ph), 142.69 (d, $J=9.2 \mathrm{~Hz}, \mathrm{Ph}), 138.34,137.63$, 129.08, 129.03, 128.87, 128.71, 128.67, 128.48, $128.44,128.27,127.71,127.63$ ($12 \mathrm{x} \mathrm{s}, \mathrm{Ph}$), 125.57 (d, $J=2.9 \mathrm{~Hz}, \mathrm{Ph}$), 125.45 (d, $J=3.0 \mathrm{~Hz}, \mathrm{Ph}$), 98.54 (dd, $J=187.9,151.1 \mathrm{~Hz}, C \mathrm{FP}), 98.37(\mathrm{dd}, J=188.1,150.8 \mathrm{~Hz}, C \mathrm{FP}), 77.36(\mathrm{COH}), 62.75(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 62.70\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 58.94\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 58.59\left(\mathrm{CHCH}_{3}\right), 51.33(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, C \mathrm{~N}), 50.73(\mathrm{~d}, J=6.3 \mathrm{~Hz}, C \mathrm{~N}), 21.45\left(\mathrm{br} \mathrm{s}, C \mathrm{H}_{3}\right), 20.88\left(\mathrm{~d}, J=20.8 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 20.89(\mathrm{~d}, J=$ $\left.20.8 \mathrm{~Hz}, C_{3}\right), 16.98\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-170.22(\mathrm{dq}, J=$ $73.5,25.2 \mathrm{~Hz}, 1 \mathrm{~F}),-171.54(\mathrm{dq}, J=73.9,25.1 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(122 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=15.48$ (d, $J=71.4 \mathrm{~Hz}, 1 \mathrm{P}), 15.06(\mathrm{~d}, J=72.1 \mathrm{~Hz}, 1 \mathrm{P}) . \mathrm{MS}(\mathrm{ESI})$ calc for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{FNO}_{4} \mathrm{P}^{+} 396.173$, found 396.23.
rac Ethyl hydrogen ((2R,3S)-2-fluoro-3-hydroxy-4-(methyl((R)-1-phenylethyl)amino)-3-phenylbutan-2-yl)phosphonate (rac 20a) and ethyl hydrogen ((2S,3R)-2-fluoro-3-hydroxy-4-(methyl((R)-1-phenylethyl)amino)-3-phenylbutan-2-yl)phosphonate (rac 20b) Procedure A $((R)$ $\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}(\mathrm{Me}), \mathrm{TEA})$, reaction time 72 h , precipitating solid from oil ($131 \mathrm{mg}, 80 \%, 1: 1$ d.r.) : ${ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.52(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.41$ - 7.27 (m, 16H, Ph), 4.22 - 3.95 (m, 6H, $\left.\mathrm{OCH}_{2}, \mathrm{OH}\right), 3.48\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.95-2.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}), 2.56-2.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH})$, $2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.72\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} C \mathrm{H}_{3}\right), 1.21(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.17-1.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.12(\mathrm{~d}, J=7.8$ Hz), 142.65 (d, $J=8.9 \mathrm{~Hz}$), 141.51, 140.52, 128.45, 128.39, 128.23, 127.92, 127.88, 127.60, 127.14, 126.98, 126.76 ($11 \times \mathrm{x} \mathrm{s}, \mathrm{Ph}$), 98.95 (dd, $J=, 180.5,156.9 \mathrm{~Hz}, C \mathrm{FP}$), 98.78 (dd, $J=185.4,154.1 \mathrm{~Hz}$, $C \mathrm{FP}), 78.21(\mathrm{~s}, C \mathrm{OH}), 75.82(\mathrm{~s}, C \mathrm{OH}),, 62.34\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.87\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $58.19\left(\mathrm{~s}, \mathrm{CHCH}_{3}\right), 58.18\left(\mathrm{~s}, C \mathrm{CHCH}_{3}\right), 57.68(\mathrm{br} \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{CN}), 37.94\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 36.68\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, $23.31-22.59\left(\mathrm{~m}, \mathrm{CH}_{3}\right), 20.82\left(\mathrm{~d}, J=20.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 20.11\left(\mathrm{~d}, J=21.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.67(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $16.51\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-171.73$ (ddt, $J=$ $99.9,50.3,25.0 \mathrm{~Hz}),-172.94(\mathrm{tt}, J=75.0,25.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-170.12(\mathrm{dq}, J=$ $75.2,25.1 \mathrm{~Hz}$), $-171.45(\mathrm{dq}, J=75.9,25.0 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\} \mathrm{NMR}\left(122 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.56(\mathrm{dd}, J=$ $75.3,3.6 \mathrm{~Hz}$), $16.35(\mathrm{~d}, J=74.3 \mathrm{~Hz})$. MS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{FNO}_{4} \mathrm{P} 410.19$, found 410.20 $[\mathrm{M}+\mathrm{H}]^{+}$.
rac Diethyl ((1R,2R)-2-((benzylamino)methyl)-1-fluoro-2-hydroxycyclohexyl)phosphonate (rac 22) Procedure $\mathrm{A}\left(\mathrm{BnNH}_{2}, \mathrm{TEA}\right)$, slightly yellow oil ($119 \mathrm{mg}, 81 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.32-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.19-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.87(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHPh}), 3.84(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Ph}), 3.45(\mathrm{dd}, J=13.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.32(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 2.25-$ $2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}), 1.75-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH})$, $1.60-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30(\mathrm{t}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.28,128.10,127.1,126.1(4 \mathrm{x} \mathrm{s}, \mathrm{Ph})$, 96.14 (dd, $J=185.3,165 \mathrm{~Hz}, C \mathrm{FP}, \mathrm{C} 1$), 71.24 (dd, $J=24.9,2.1 \mathrm{~Hz}, C \mathrm{OH}, \mathrm{C} 2$), 63.80 (dd, $J=6.5$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 62.2\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 52.10-52.04(\mathrm{~m}, \mathrm{CN}), 51.74\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 35.43(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, C \mathrm{H}_{2}, \mathrm{C} 3$), 28.67 (dd, $J=19.5,2 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 6$), $19.69\left(\mathrm{~s}, C \mathrm{H}_{2}, \mathrm{C} 4\right), 19.16$ (dd, $J=9.1,3.1 \mathrm{~Hz}$, $\left.C H_{2}, \mathrm{C} 5\right), 15.4\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 15.3\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (377 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-181.26(\mathrm{~d}, J=86.3 \mathrm{~Hz}$, $){ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=20.53(\mathrm{~d}, J=88.6 \mathrm{~Hz})$. $\mathrm{GC}-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=354.2[\mathrm{M}-\mathrm{F}]^{+}, t_{R}=15.48 \mathrm{~min}$.
rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-((((S)-1-phenylethyl)amino)methyl)cyclohexyl) phosphonate (rac 23a) and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-(()(S)-1phenylethyl)amino)methyl)cyclohexyl)phosphonate (rac 23b) Procedure A ((S)- $\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}_{2}$, TEA), slightly yellow oil ($121 \mathrm{mg}, 78 \%$, $1: 1$ d.r.): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.18$ (m, $10 \mathrm{H}, \mathrm{Ph}), 4.16-4.09\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.80\left(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.69(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}$, CHCH_{3}), $3.33(\mathrm{dd}, J=13.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $3.24(\mathrm{dd}, J=13.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.13(\mathrm{~d}, J=$ $\left.13.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}, \mathrm{CH} H\right), 2.07\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}, \mathrm{CH} H\right), 2.10-1.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73-$ $1.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56-1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38(\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}$), $1.34-1.27\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.58,145.2 .6,128.47,128.37$, $126.79,126.29$ ($6 \mathrm{x} \mathrm{s}, \mathrm{Ph}$), 97.77 (dd, $J=187.3,165.2 \mathrm{~Hz}, C \mathrm{FP}, \mathrm{C} 1$), 97.67 (dd, $J=185.4,164.9 \mathrm{~Hz}$, C FP, C1), 70.28 (dd, $J=20.0,2 \mathrm{~Hz}, C \mathrm{OH}, \mathrm{C} 2$), 70.22 (dd, $J=19.9,2.1 \mathrm{~Hz}, C \mathrm{OH}, \mathrm{C} 2$), 63.16 (dd, J $\left.=6.8,2.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 63.13\left(\mathrm{dd}, J=7.1,0.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.74\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 62.65(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 59.30\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 58.30\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 52.75(\mathrm{dd}, J=3.1,1.3 \mathrm{~Hz}, C \mathrm{~N}), 52.05(\mathrm{dd}, J=3.5$, $2.3 \mathrm{~Hz}, C \mathrm{~N}), 34.70\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{C} 3\right), 34.55\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, C \mathrm{H}_{2} \mathrm{C} 3\right), 29.10(\mathrm{dd}, J=18.7 \mathrm{~Hz}$, $2.1 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 6$), 28.90 (dd, $\left.J=18.5,2.0 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 6\right), 24.46\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 24.30\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 20.53(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, C H_{2}, \mathrm{C} 4$), 20.52 (d, $J=1.3 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 4$), 19.76 (dd, $J=8.7,2.7 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 5$), 19.67 (dd, $J=$ $\left.9.0,3.0 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{C} 5\right), 16.46\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) 16.44\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.43(\mathrm{~d}, J$ $\left.=5.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.42\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-181.0--$
$182.0(\mathrm{~m}, 2 \mathrm{~F}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.63(\mathrm{~d}, J=89.1 \mathrm{~Hz}), 20.61(\mathrm{~d}, J=90.0 \mathrm{~Hz})$. $\mathrm{GC}-\mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=388.2[\mathrm{M}+\mathrm{H}]^{+} ; t_{R} 18.8 \mathrm{~min}$.
rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-((methyl((R)-1-phenylethyl)amino)methyl) cyclohexyl) phosphonate (rac 24a) and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-((methyl((R)-1phenylethyl)amino)methyl)cyclohexyl)phosphonate (rac 24b) Procedure A (R)$\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}(\mathrm{Me})$, TEA), slightly yellow oil ($133 \mathrm{mg}, 83 \%$ yield, $1: 1 \mathrm{~d} . \mathrm{r}$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.27-7.22(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 4.15-4.04\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.96(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 3.81\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.64\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.49(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}$, CHH), 3.29 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 2.43 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 2.39 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHH}), 2.21\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05-1.85\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63-1.40(\mathrm{~m}$, $\left.12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29-1.23\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=141.79,141.45,127.48(3 \mathrm{x} \mathrm{s}, \mathrm{Ph}), 127.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{Ph}), 126.93(\mathrm{~d}, J=1.9 \mathrm{~Hz}, \mathrm{Ph})$, 126.61 (s, Ph), 126.19 (s, Ph), 96.98 (dd, $J=196.6,155.2 \mathrm{~Hz}, C \mathrm{FP}, \mathrm{C} 1$), 97.00 (dd, $J=196.5,156.0$ $\mathrm{Hz}, C \mathrm{FP}, \mathrm{C} 1$), 70.93 (dd, $J=22.7,1.2 \mathrm{~Hz}, C \mathrm{OH}, \mathrm{C} 2$), 70.27 (dd, $J=23,1 \mathrm{~Hz}, C O H, \mathrm{C} 2$), 62.65 (s, $\left.C H_{3}\right), 61.98\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 61.87\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.78\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, OCH_{2}), $61.73\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 58.63(\mathrm{br} \mathrm{s}, \mathrm{CN}), 58.36(\mathrm{br} \mathrm{s}, \mathrm{CN}), 38.39\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 38.14$ (s, $C H_{3}$), 34.18 (dd, $J=7.7 \mathrm{~Hz}, 1 \mathrm{~Hz}, C H_{2}, \mathrm{C} 3$), $33.23\left(\mathrm{dd}, J=7.3 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 3\right), 28.83$ (dd, $J=$ $20.0 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, C_{2}, \mathrm{C} 6$), 28.56 (dd, $J=19.5 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, C_{2}, \mathrm{C} 6$), $22.30\left(\mathrm{~s}, 2 \times C H_{3}\right), 19.57$ (d, J $=0.8 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 4$), 19.43 (d, $J=0.6 \mathrm{~Hz}, C \mathrm{H}_{2}, \mathrm{C} 4$), 19.21 (br s, $C_{2}, \mathrm{C} 5$), 19.15 (br s, $C H_{2}, \mathrm{C} 5$), 15.48 $\left(\mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{OCH}_{2} C \mathrm{H}_{3}\right), 15.44\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{OCH}_{2} C H_{3}\right), 15.43\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, \mathrm{OCH}_{2} C \mathrm{H}_{3}\right), 15.41$ (d, $J=5.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-180.45$ (br s). ${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.11(\mathrm{~d}, J=85.8 \mathrm{~Hz}) . \mathrm{GC}-\mathrm{MS} \mathrm{m} / z=402[\mathrm{M}+\mathrm{H}]^{+} ; R_{t} 19.2 \mathrm{~min} ., m / z=402$ $[\mathrm{M}+\mathrm{H}]^{+} ; t_{R}=19.3 \mathrm{~min}$.
3.1. General procedure (procedure C) for hydrogenation and N-Boc protection of γ-amino- β hydroxyphosphonates.

A solution of N, N-dibenzyl protected hydroxyphosphonate (0.3 mmol) in $\mathrm{EtOH}(2 \mathrm{~mL})$ containing $\mathrm{Boc}_{2} \mathrm{O}(98 \mathrm{mg}, 0.45 \mathrm{mmol})$ was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ under atmospheric pressure for 48 h . Then, the catalyst was filtrated through Celite with MeOH , the solution was concentrated on vacuum, and purified by flash column chromatography $\mathrm{CHCl}_{3} \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ (v:v), (1 cm layer of silica gel) to give appropriate N-Boc protected amino hydroxyphosphonate.
3.2. General procedure (procedure D) for hydrogenation of monoesters of hydroxyalkylphosphonic acids.

A solution of monoester of N, N-dibenzyl protected or azido- hydroxyphosphonic acid $\mathbf{1 7}$ or $\mathbf{3 8}$ (0.3 mmol) in absolute EtOH (2 mL) was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ under atmospheric pressure for 48 h . Then, the catalyst was filtrated through Celite with MeOH , the solution was concentrated on vacuum, and purified by flash column chromatography $\mathrm{CHCl}_{3} \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$ (v:v) (1 cm layer of silica gel) to give monoester of amino hydroxyphosphonic acid 27.
3.3. Spectroscopic properties of compounds 26-28 (procedures C, D)
rac Tert-butyl ((2R,3R)-3-(diethoxyphosphoryl)-3-fluoro-2-hydroxy-2-methylpropyl)carbamate (rac 26a) Procedure C, major isomer. Isolated as a mixture with 26b, which could not be separated by the chromatography techniques employed in this study transparent oil ($88 \mathrm{mg}, 85 \%, 4: 1$ d.r.) : ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.63(\mathrm{dd}, J=45.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHFP}), 4.29-4.19(\mathrm{~m}$,
$3 \mathrm{H}, \mathrm{OCH}_{2}$), $4.11(\mathrm{dq}, J=7.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHH}), 3.51-3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{HN}), 3.41-3.33(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH} H \mathrm{~N}), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42-1.34\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=157.20(\mathrm{~s}, \mathrm{CO}), 91.87(\mathrm{dd}, J=188.9,161.8 \mathrm{~Hz}, C \mathrm{FP}), 79.87\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 73.59(\mathrm{~d}, J=$ $18.3 \mathrm{~Hz}, \mathrm{COH}), 64.25\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 63.08\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 47.22-46.91(\mathrm{~m}, C \mathrm{~N})$, $28.45\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.97\left(\mathrm{t}, J=4.1 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 16.49\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, \mathrm{OCH}_{2} C \mathrm{H}_{3}\right), 16.47(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{19} \mathrm{~F}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-215.57\left(\mathrm{dd}, J=78.4,45.2 \mathrm{~Hz}\right.$). ${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR (122 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=17.06$ (d, $J=76.3 \mathrm{~Hz}$). IR (film): $v=3349,2980,2933,1712,1518,1392,1367$, 1246, 1167, 1029, $974 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}=343.5[\mathrm{M}]^{+}$.
rac Tert-butyl ((2S,3R)-3-(diethoxyphosphoryl)-3-fluoro-2-hydroxy-2-methylpropyl)carbamate (rac 26b) minor isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.18$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $4.42(\mathrm{dd}, J=45.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHFP}$), $4.29-4.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.41-3.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHN}), 3.20-3.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHN})$, $1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42-1.34\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-$ $212.13(\mathrm{dd}, J=69.4,45.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(122 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=17.81(\mathrm{~d}, J=71.7 \mathrm{~Hz})$.
rac Ethyl ((2R,3S)-4-ammonio-2-fluoro-3-hydroxy-3-phenylbutan-2-yl)phosphonate (rac 27) Procedure D. white solid ($72 \mathrm{mg}, 82 \%$). Alternatively, compound rac 27 can be obtain from rac 38 by procedure D ($65 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), $7.50-$ $7.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 4.11-4.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{OH}\right), 4.01(\mathrm{brd}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 3.61(\mathrm{br} \mathrm{d}, J=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 1.28\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, J=25.0,11.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3}$ OD) $\delta=139.28(\mathrm{~d}, J=9.7 \mathrm{~Hz}, \mathrm{Ph}), 130.20(\mathrm{~s}, \mathrm{Ph}), 129.37(\mathrm{~d}, J=3.6 \mathrm{~Hz}, \mathrm{Ph})$, 128.36 (d, $J=3.2 \mathrm{~Hz}, \mathrm{Ph}$), 98.29 (dd, $J=189.7,152.7 \mathrm{~Hz}, C \mathrm{FP}$), 77.25 (dd, $J=20.4,4.3 \mathrm{~Hz}$, $C(\mathrm{OH})), 63.55\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 47.10(\mathrm{~s}, C \mathrm{~N}) 19.52\left(\mathrm{dd}, J=21.3,3.3 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 17.20(\mathrm{~d}, J=$ $\left.5.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($283 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=-171.21\left(\mathrm{dq}, J=75.1,25.1 \mathrm{~Hz}\right.$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($122 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=16.39$ (d, $J=75.2 \mathrm{~Hz}$). IR (film): $v=3360$ (br), 3164, 2982, 2930, $1524,1496,1451,1391,1370,1212,1198,1061,951 \mathrm{~cm}^{-1}$. MS (ESI) $\mathrm{m} / \mathrm{z}=292.3[\mathrm{M}+\mathrm{H}]^{+}$
rac Tert-butyl (((1R,2R)-2-(diethoxyphosphoryl)-2-fluoro-1-hydroxycyclohexyl)methyl) carbamate (rac 28) Procedure C, white solid ($99 \mathrm{mg}, 86 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $4.27-4.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.49-3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.25-2.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}), 2.09-1.99(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHH}), 1.76-1.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right), 1.61-1.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.36(\mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.30(\mathrm{~s}, \mathrm{CO}), 96.62(\mathrm{dd}, J=189.7$, $161.7 \mathrm{~Hz}, C \mathrm{FP}, \mathrm{C} 2), 79.44\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 73.32(\mathrm{~d}, J=21.6 \mathrm{~Hz}, \mathrm{COH}, \mathrm{C} 1), 66.94-61.01(\mathrm{~m}, \mathrm{OCH} 2)$, 47.00 (s, $C \mathrm{~N}$), 30.94 (d, $J=8.7 \mathrm{~Hz}, \mathrm{C} 6$), $28.54\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.81$ (d, $J=7.2 \mathrm{~Hz}, \mathrm{C} 4$), 19.77 ($\mathrm{s}, \mathrm{C} 5$), $16.56\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.55\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{OCH}_{2} C \mathrm{H}_{3}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $-181.62(\mathrm{ddd}, J=85.2,41.3,13.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(122 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=20.69(\mathrm{~d}, J=83.7 \mathrm{~Hz})$. IR (film): $v=3350,2977,2935,2868,1712,1517,1393,1366,1246,1170,1026,973 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $m / z=383.3[\mathrm{M}]^{+}$.

4.1. General procedure (procedure F) for oxiran 5-8 opening by HBr :

To the dissolved in chloroform (1.5 mL) acethyl bromide ($44 \mu \mathrm{~L}, 74 \mathrm{mg}, 0.6 \mathrm{mmol}$) methanol (24 $\mu \mathrm{L}, 19 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and reaction mixture was stirred for 20 min . Then, oxirane $5-8(0.5 \mathrm{mmol})$ in chloroform (1.5 mL) was added, and stirring was continued at $0^{\circ} \mathrm{C}$ for 2 h . Next, crude reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NaHCO}_{3}\right.$ aq $/$ brine $)$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give bromohydrine $\mathbf{3 2 - 3 5}$. Flash column chromatography $\mathrm{CHCl}_{3} \rightarrow 5 \%$ $\mathrm{MeOH} / \mathrm{CHCl}_{3}(\mathrm{v}: \mathrm{v})$, (1 cm layer of silica gel) gave compounds with lower yields.
4.2. Spectroscopic properties of compounds $\mathbf{3 2 - 3 5}$
rac Diethyl ((1R,2S)-2-bromo-1-fluoro-3-hydroxy-2-methylpropyl)phosphonate (rac 32a), major isomer, isolated as a mixture with 32b, which could not be separated by the chromatography techniques employed in this study; transparent oil (crude: $141 \mathrm{mg}, 92 \%, 4: 1 \mathrm{dr}$). Additional column chromatography gave 32a/32b ($88 \mathrm{mg}, 57 \%$, $4: 1$, d.r.) : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.85(\mathrm{dd}, J=$ $44.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.31-4.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.60(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHH}), 3.49(\mathrm{dt}, J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 1.50\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.36\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=89.99(\mathrm{dd}, J=$ $189.1,164.4 \mathrm{~Hz}, C \mathrm{FP}), 72.72$ (dd, $J=18.2,2.7 \mathrm{~Hz}, C \mathrm{Br}), 64.39$ (dd, $J=6.8,1.9 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 62.90 $\left(\mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 37.94(\mathrm{dd}, J=9.1,6.7 \mathrm{~Hz}, \mathrm{COH}), 22.80\left(\mathrm{dd}, J=3.4,2.3 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 16.37(\mathrm{~d}, J$ $\left.=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .16 .31\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-214.59$ (ddq, $J=78.1,45.0,1.4 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.04(\mathrm{~d}, J=78.0 \mathrm{~Hz}) . \mathrm{IR}$ (film): $v=3348,2984,2929,1243,1163,1019,973,544 \mathrm{~cm}^{-1} ; G C-M S m / z=307.0 / 309.1[\mathrm{M}+\mathrm{H}]^{+}$ $; t_{R}=13.23 / 13.35 \mathrm{~min}$;
rac Diethyl ((1R,2R)-2-bromo-1-fluoro-3-hydroxy-2-methylpropyl)phosphonate (rac 32b), minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.90(\mathrm{dd}, J=44.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{~F}), 4.31-4.16(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.56(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2), 1.52\left(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.36\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=89.23$ (dd, $J=192.2,162.8 \mathrm{~Hz}, C \mathrm{FP}$), $71.69(\mathrm{dd}, J=19.6,2.9 \mathrm{~Hz}, C \mathrm{Br}), 63.63\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $63.22\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 39.42(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}, \mathrm{COH}), 21.92\left(\mathrm{dd}, J=4.6,2.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $16.31\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.10\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ -212.45 (ddq, $J=72.6,44.9,1.2 \mathrm{~Hz}){ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.29(\mathrm{~d}, J=72.7 \mathrm{~Hz})$.
rac Diethyl ((1R,2S)-2-bromo-1-fluoro-3-hydroxy-2-phenylpropyl)phosphonate (rac 33) slightly yellow oil (slowly decomposing on air), ($159 \mathrm{mg}, 86 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.47-7.36$ (m, 5H, Ph), $5.12(\mathrm{dd}, J=45.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.20\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.93(\mathrm{dd}, J=10.8$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 3.85(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 3.76(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHH}), 3.44(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH} H), 1.33\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{Ph}), 128.32,128.20,126.28(3 \mathrm{x} \mathrm{s}, \mathrm{Ph}), 90.19(\mathrm{dd}, J=$ $192.7,164.4 \mathrm{~Hz}, C \mathrm{FP}$), 76.03 (d, $J=19.0 \mathrm{~Hz}, C \mathrm{Br}), 64.45\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 62.79$ (d, $J=6.1$ $\mathrm{Hz}, \mathrm{OCH}_{2}$), $39.07\left(\mathrm{dd}, J=11.8,5.3 \mathrm{~Hz}, \mathrm{COH}\right.$), $16.35\left(\mathrm{dd}, J=4.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 15.87 (dd, $J=5.4$ $\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-213.44(\mathrm{dd}, J=81.3,45.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=15.84(\mathrm{~d}, J=81.2 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{EI}) m / z=369.1 / 371.1[\mathrm{M}+\mathrm{H}]^{+}$.
rac Diethyl ((2R,3R)-3-bromo-2-fluoro-4-hydroxy-3-phenylbutan-2-yl)phosphonate (rac 34) transparent oil ($180 \mathrm{mg}, 94 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.40(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 4.66(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.13-4.30(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.21(\mathrm{dd}, J=11.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.39\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.34 (dd, $J=25.1,13.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.33 (dd, $J=7.1,0.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=139.22(\mathrm{~d}, J=9.8 \mathrm{~Hz}, \mathrm{Ph}), 127.97(\mathrm{~s}, \mathrm{Ph}), 127.94(\mathrm{~s}, \mathrm{Ph}), 126.67(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, Ph), 97.84 (dd, $J=191.2,163.6 \mathrm{~Hz}, C \mathrm{FP}$), 78.29 (dd, $J=21.5,4.2 \mathrm{~Hz}, C \mathrm{Br}), 63.93$ (dd, $J=7.1,2.1$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 63.71\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 40.95(\mathrm{dd}, J=4.3,1.3 \mathrm{~Hz}, \mathrm{COH}), 19.99(\mathrm{dd}, J=21.2,3.1$ $\left.\mathrm{Hz}, C H_{3}\right), 16.45\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.36\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (565 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-171.15(\mathrm{dq}, J=83.8,25.1 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\}\left(242 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.36(\mathrm{~d}, J=83.9 \mathrm{~Hz})$. MS (EI) $m / z=368.1 / 370.1[\mathrm{M}-\mathrm{Me}]^{+}$
rac Diethyl ((1R,2S)-2-bromo-1-fluoro-2-(hydroxymethyl)cyclohexyl)phosphonate (rac 35) Slightly yellow oil ($158 \mathrm{mg}, 91 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.26-4.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.12(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHOH}$), $3.65(\mathrm{dd}, J=11.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHOH}), 3.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.26-2.18(\mathrm{~m}$,

1H, CHH, C6H), 2.16 - 2.11 (m, 1H CHH, C3H), $2.09-2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}, \mathrm{C} 6 \mathrm{H}), 1.71-1.65(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHH}, \mathrm{C} 4 \mathrm{H}), 1.61-1.50\left(\mathrm{~m}, \mathrm{CH}_{2}, 4 \mathrm{H}, \mathrm{C} 3 \& \mathrm{C} 4 \mathrm{H} \& \mathrm{C}_{2} \mathrm{H}_{2}\right), 1.38\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=96.6(\mathrm{dd}, J=193.5,161.3 \mathrm{~Hz}, C \mathrm{FP}, \mathrm{C} 1), 72.0(\mathrm{dd}, J=21.5,2.4 \mathrm{~Hz}$, $C B r, C 2), 64.0\left(\mathrm{~d}, J=7.1, \mathrm{OCH}_{2}\right), 63.9\left(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 41.9\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}\right), 31.5(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, C_{2}, C 3$), 29.1 (dd, $J=20.4,2.8 \mathrm{~Hz}, C H_{2}, C 6$), 19.7 (s, $C H_{2}, \mathrm{C} 4$), 19.6 (dd, $J=9.8,2.7 \mathrm{~Hz}$, $\left.C H_{2}, \mathrm{C} 5\right), 16.41\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.40\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} C H_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $(565 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-179.50(\mathrm{dd}, J=78.9,43.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.31(\mathrm{~d}, J=80.7$ $\mathrm{Hz})$. $\mathrm{GC}-\mathrm{MS} \mathrm{m} / \mathrm{z}=347.3 / 349.3[\mathrm{M}+\mathrm{H}]^{+} ; R_{t} 15.9 \mathrm{~min}$.
5.1. General procedure (procedure I) for hydrogenation and N-Boc protection of β-azido- γ hydroxyphosphonates.

General procedure (procedure I) for hydrogenation and N-Boc protection of β-azido- γ hydroxyphosphonates. A solution of azidohydroxyphosphonate $\mathbf{3 6 - 3 7}, 39(0.3 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(2 \mathrm{~mL})$ containing $\mathrm{Boc}_{2} \mathrm{O}(98 \mathrm{mg}, 0.45 \mathrm{mmol})$ was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ under atmospheric pressure for 48 h . Then, the catalyst was filtrated through Celite with MeOH , the solution was concentrated on vacuum, and purified by flash column chromatography $\mathrm{CHCl}_{3} \rightarrow 5 \%$ $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ (v:v), (1 cm layer of silica gel) to give appropriate N-Boc protected amino hydroxyphosphonate.
5.2. Spectroscopic properties of compounds 40-42
rac Tert-butyl ((1R,2S)-1-(diethoxyphosphoryl)-1-fluoro-3-hydroxy-2-methylpropan-2yl)carbamate (rac 40a) Procedure I, major isomer. Isolated as a mixture with 40b, which could not be separated by the chromatography techniques employed in this study, transparent oil ($82 \mathrm{mg}, 80 \%$, 3:1 d.r.): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.61$ (dd, $J=45.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}$), $4.30-4.16(\mathrm{~m}, 4 \mathrm{H}$, OCH_{2}), $3.43(\mathrm{dd}, J=15.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}) 3.36(\mathrm{dd}, J=14.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 1.44(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42-1.31\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=157.21(\mathrm{~s}, \mathrm{CO})$, 91.86 (dd, $J=189.0,162.0 \mathrm{~Hz}, C \mathrm{FP}), 79.93\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 73.60(\mathrm{~d}, J=18.2 \mathrm{~Hz}, C \mathrm{OH}), 64.31(\mathrm{~d}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 63.12\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 47.13(\mathrm{CN}), 28.48\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 22.04(\mathrm{t}, J=4.1 \mathrm{~Hz}$, $C H_{3}$), $16.52\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.51\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (283 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-215.52(\mathrm{dd}, J=76.3,45.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\} \mathrm{NMR}\left(122 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.60(\mathrm{~d}, J=76.5$ Hz). IR (film): $v=3395,2982,2932,1714,1518,1393,1366,1249,1166,1026,964 \mathrm{~cm}^{-1}$. MS (EI) $m / z=343.6[\mathrm{M}]^{+}$.
rac Tert-butyl ((1R,2R)-1-(diethoxyphosphoryl)-1-fluoro-3-hydroxy-2-methylpropan-2yl)carbamate (rac 40b), minor isomer: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.70(\mathrm{dd}, J=45.4,6.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHF}$), $4.30-4.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.29-3.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHH}), 3.18$ (ddd, $J=11.2,4.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHH}), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42-1.31\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}, 2 \mathrm{xOCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (283 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-211.01(\mathrm{dd}, J=71.4,45.0 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\} \mathrm{NMR}\left(122 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=17.36(\mathrm{~d}, J=71.7$ Hz).
rac Tert-butyl ((1R,2S)-1-(diethoxyphosphoryl)-1-fluoro-3-hydroxy-2-phenylpropan-2$\boldsymbol{y l})$ carbamate (rac 41) Procedure I. white solid ($100 \mathrm{mg}, 82 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.54$ $-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.42-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 5.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.98(\mathrm{dd}, J=$ $45.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}$), 4.19 (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 3.75 ("br d", $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{O}_{2} \mathrm{OH}$), $3.73-3.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH}), 3.39(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 1.31(\mathrm{td}, J=7.1,0.7 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.94\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=156.51(\mathrm{~s}, C \mathrm{CO}), 139.14,128.30,128.05,126.52(4 \mathrm{x} \mathrm{s}, \mathrm{Ph}), 91.19(\mathrm{dd}, J=192.6,165.2 \mathrm{~Hz}, C \mathrm{FP})$, $79.47\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 77.16\left(\mathrm{~d}, J=19.3 \mathrm{~Hz}, \mathrm{CHCl}_{3}, C \mathrm{OH}\right), 64.41\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 62.59(\mathrm{~d}, J=$ $\left.6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 47.64(\mathrm{dd}, J=11.3,5.2 \mathrm{~Hz}, C \mathrm{~N}), 28.31\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.51(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.02\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=158.72(\mathrm{~s}, \mathrm{CO})$, 140.82, 129.03, $128.69,127.63$ ($4 \mathrm{x} \mathrm{s}, \mathrm{Ph}$), 93.41 (dd, $J=189.0,168.7 \mathrm{~Hz}, C \mathrm{FP}$), $80.35\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $78.29(\mathrm{~d}, J=18.2 \mathrm{~Hz}, C \mathrm{~N}), 64.70\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 64.07\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 28.59(\mathrm{~s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.50\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 16.48\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $(283 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-213.80(\mathrm{dd}, J=82.0,45.6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\} \mathrm{NMR}\left(122 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=16.11(\mathrm{~d}, J=82.1$ Hz). IR (film): $v=3377,2979,2925,2854,1712,1513,1450,1392,1367,1247,1168,1030,977 \mathrm{~cm}$ ${ }^{-1} . \mathrm{MS}(\mathrm{EI}) m / z=405.5[\mathrm{M}]^{+}$.
rac Tert-butyl ((1S,2R)-2-(diethoxyphosphoryl)-2-fluoro-1-(hydroxymethyl)cyclohexyl) carbamate (rac 42) Procedure I, precipitating solid from oil ($92 \mathrm{mg}, 80 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.37-$ $4.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.48\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.15-1.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHH}), 1.76-1.50(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{HCH}, \mathrm{CH}_{2}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.38\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.27(\mathrm{~s}, \mathrm{CO}), 95.55(\mathrm{dd}, J=189.6,161.5 \mathrm{~Hz}, C \mathrm{FP}$, C2), $78.44\left(\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 72.29(\mathrm{br} \mathrm{d}, J=21.4 \mathrm{~Hz}, \mathrm{COH}, \mathrm{C} 1), 62.89\left(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, 62.77 (d, $J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 45.94 (s, CN), 29.85 (d, $J=8.6 \mathrm{~Hz}, \mathrm{C} 6$), 27.56 (dd, $J=20.2,2.5 \mathrm{~Hz}$, C3), $27.51\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.20-17.32(\mathrm{~m}, \mathrm{C} 4,5), 15.58\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 15.49(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{19} \mathrm{~F}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-181.58$ (ddd, $J=83.6,40.1,12.4 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($122 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.12$ (d, $J=83.8 \mathrm{~Hz}$). IR (film): $v=3353,2978,2936,2869,1713$, $1680,1517,1449,1392,1366,1245,1169,1025,974 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}=383.6[\mathrm{M}]^{+}$.

rac 5 a

rac 5b

${ }^{13}$ C NMR of rac 5a,b (4.3:1, d.r.)

2D NOESY of rac $5 \mathbf{a}, \mathrm{~b}$ (4.3:1, d.r.)

Diagnostic fragments of 2D NOESY of rac 5a,b (4.3:1, d.r.)

2D H-F HOESY of rac 5a,b (4.3:1, d.r.)

rac 6

$\begin{array}{r}136.47 \\ 136.44\end{array}$

$\mathcal{C}_{128.98}^{128.54}$
$乙_{127.40}$

rac 6

$\begin{array}{lll}140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5\end{array}$
${ }^{13} \mathrm{C}$ NMR of rac 6
$\underbrace{\text { añon }}$

rac 6

${ }^{19}$ F NMR of rac 6

rac 6

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of rac 6

Stacked plots of ${ }^{1}$ H NMR (top), 1D NOESY (center) and 1D H-F HOESY (bottom) of rac 6

rac 7

${ }^{1} \mathrm{H}$ NMR of rac 7

\cdots	- - $\underbrace{\text { - }}$	

${ }^{13} \mathrm{C}$ NMR of rac 7

rac 7

${ }^{19}$ F NMR of rac 7

${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR of rac 7

2D NOESY of rac 7

2D H-F HOESY of rac 7

${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR of rac 8

HSQC of rac 8

HMBC of rac 8

NOESY of rac 8

HOESY of rac 8

${ }^{13} \mathbf{C}$ NMR of rac $\mathbf{1 0 a , b}$ (6.2:1, d.r.)

rac 10b

${ }^{19} \mathbf{F}$ NMR of rac 10a,b (6.2:1, d.r.)

$\begin{array}{lllllll}18.5 & 18.0 & 17.5 & \begin{array}{c}17.0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 16.5 & 16.0 & 15.5 \\ & & 15.0\end{array}$

rac 10a

rac 10b

${ }^{31} \mathbf{P}\left\{/{ }^{1} \mathbf{H}\right\}$ NMR of rac 10a,b (6.2:1, d.r.)

rac 11'a

rac 11b

${ }^{1} \mathbf{H}$ NMR of rac 11a,b/11'a,b (5:4/1.5:1, d.r.)

${ }^{13} \mathrm{C}$ NMR of rac $11 \mathrm{a}, \mathrm{b} / 11$ 'a,b (5:4/1.5:1, d.r.)

rac 11'a

rac 11b

rac 11 'b

${ }^{19}$ F NMR of rac 11a,b/11'a,b (5:4/1.5:1, d.r.)

rac 11a

rac 11b
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR of rac 11a,b/11'a,b (5:4/1.5:1,, d.r.)

rac 12a

${ }^{1}$ H NMR of rac 12a:12b12'a:12'b (17:14/1:1, d.r.)

${ }^{13}$ C NMR of rac 12a:12b12'a:12'b (17:14/1:1, d.r.)

rac 12a

rac 12b

rac 12'b

${ }^{19} \mathrm{~F}$ NMR of rac 12a:12b12'a:12'b (17:14/1:1, d.r.)

rac 12a
rac 12'a

rac 12b
rac 12'b

P\{/'H\} NMR of rac 12a:12b12'a:12'b (17:14/1:1, d.r.)

[^1]

[^2]Supplementary Material

$\begin{array}{lllllllll}16.9 & 16.8 & 16.7 & 16.6 & 16.5 & 16.4 & 16.3 & 16.2 & 16.1\end{array}$
16.616 .5
f 1
(ppm)

rac 17

${ }^{31} \mathrm{P}\{/ \mathbf{1} \mathrm{H}\}$ NMR of rac 17

rac 18

${ }^{1} \mathrm{H}$ NMR of rac 18

$\begin{array}{llllllllll}20 & 19 & 18 & 17 & \begin{array}{c}16 \\ \text { f1 }\end{array} \frac{15}{(\mathrm{ppm})} & 14 & 13 & 12 & 11 & 10\end{array}$
rac 18

${ }^{31} \mathbf{P}\left\{/{ }^{1} \mathbf{H}\right\}$ NMR of rac 18

rac19a

rac 19b

${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR of rac $19 \mathrm{a}, \mathrm{b}$ (1:1, d.r.)

rac 20a

rac 20b

rac 20a

rac 20b

${ }^{13} \mathrm{C}$ NMR of rac 20a,b (1.1:1, d.r.)

rac 20a

rac 20b
${ }^{19}$ F NMR of rac 20a,b (1.1:1, d.r.)

rac 20a

${ }^{31} \mathbf{P}\left\{/^{1} \mathrm{H}\right\}$ NMR of rac 20a,b (1.1:1, d.r.)

${ }^{1} \mathrm{H}$ NMR of rac 21

rac 21

${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR of rac 21

COSY of rac 21

rac 22

${ }^{1} \mathrm{H}$ NMR of rac 22

rac 22

[^3]

rac 22

${ }^{19} \mathrm{~F}$ NMR of rac 22

rac 22

[^4]
${ }^{1}$ H NMR of rac 23a,b (1:1, d.r.)

rac 23a

rac 23b

${ }^{13} \mathbf{C}$ NMR of rac 23a,b (1:1, d.r.)

rac 24a

rac 24b

${ }^{1} \mathbf{H}$ NMR of rac 24a,b (1:1, d.r.)

rac 24a

[^5]
${ }^{19}$ F NMR of rac 24a,b (1:1, d.r.)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of rac $24 \mathrm{a}, \mathrm{b}$ (1:1, d.r.)

rac 26a

rac 26b

${ }^{1} \mathrm{H}$ NMR of rac 26a,b (3.8:1, d.r.)

rac 26a

rac 26b

 ${ }^{13} \mathrm{C}$ NMR of rac 27

rac 27

${ }^{19} \mathrm{~F}$ NMR of rac $\mathbf{2 7}$

${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR of rac 27

Stacked plots of ${ }^{\mathbf{1}} \mathrm{H}$ NMR (top) and 1D H-F HOESY (center) and 1D NOESY of rac 27 (bottom).

${ }^{1} \mathrm{H}$ NMR of rac 28

[^6]

${ }^{1} \mathrm{H}$ NMR of rac 29a,b (5:1, d.r.)

rac 29a

rac 29b

rac 30

$\left.\begin{array}{llllllllllllll}20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 \\ f 1 & (\mathrm{ppm})\end{array}\right)$

rac 31

${ }^{19}$ F NMR of rac $31\left(\mathrm{D}_{2} \mathrm{O}\right)$

HMBC of rac $31\left(\mathrm{D}_{2} \mathrm{O}\right)$

rac 32a

${ }^{13} \mathrm{C}$ NMR of rac 32a,b (4:1, d.r.)
(

rac 32b

${ }^{19}$ F NMR of rac 32a,b (4:1, d.r.)

rac 32a

2D NOESY of rac 32a,b (4:1, d.r.)

Diagnostic fragments of 2D NOESY of rac 32a,b (4:1, d.r.)

Stacked plots of ${ }^{1} \mathbf{H}$ NMR (top) and 1D H-F HOESY of rac 32a (center) and 32b (bottom) (4:1, d.r.)

Supplementary Material

${ }^{19}$ F NMR of rac 33

rac 33

${ }^{19} \mathrm{~F}$ NMR of rac 34

rac 34

[^7]

Stacked plots of ${ }^{1}$ H NMR (top) and 1D NOESY (irradiated Me, center) and 1D H-F HOESY (bottom) of rac 34

rac 35

rac 35

${ }^{13} \mathrm{C}$ NMR of rac 35

${ }^{19}$ F NMR of rac 35

rac 35

${ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\}$ NMR of rac 35

COSY of rac 35
OCH_{2}
CHH
$\mathrm{C} 6 \mathrm{H} \quad \mathrm{C} 3 \& 6 \mathrm{H} \mathrm{C} 4 \mathrm{H} \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}$

2D NOESY of rac 35

Diagnostic fragments of 2D NOESY of rac 35

$\underset{\dot{\gamma}}{ }$

rac 36b

${ }^{1} \mathrm{H}$ NMR of rac 36a,b (6:1, d.r.)

rac 36a

${ }^{13} \mathbf{C}$ NMR of rac 36a,b (6:1, d.r.)

rac 36a

rac 36b

${ }^{19}$ F NMR of rac 36a,b (6:1, d.r.)

1	20	19	$\begin{array}{c}18 \\ \mathrm{f}(\mathrm{ppm})\end{array}$	17	16	15

rac 36b
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of rac $\mathbf{3 6 a}, \mathrm{b}$ (6:1, d.r.)
$\mathrm{CHF} \quad \mathrm{OCH}_{2} \quad \mathrm{OH} \mathrm{CHHa} \mathrm{CHHb} \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}$ сННb

2D NOESY of rac 36a,b (6:1, d.r.)

rac 37

Supplementary Material

rac 37

${ }^{19} \mathrm{~F}$ NMR of rac 37
No

rac 37
18.518 .017 .517 .016 .516 .015 .515 .014 .514 .0 f1 (ppm)

Stacked plots of ${ }^{1} \mathrm{H}$ NMR (top), 1D NOESY (irradiated CHF, center) and 1D H-F HOESY (bottom) of rac 37

rac 38

rac 38

${ }^{13} \mathrm{C}$ NMR of rac 38

rac 38

rac 38

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathbf{H} \mathbf{H}\right.$ NMR of rac 38
Ph
OCH_{2}
$\mathrm{OCH}_{2} \mathrm{CH}_{3} \mathrm{Me}$
$\mathrm{CHH} \quad \mathrm{CH}$

2D NOESY of rac 38

Supplementary Material

Stacked plots of ${ }^{1} \mathrm{H}$ NMR (top) and 1D H-F HOESY (bottom) of rac 38

${ }^{1} \mathrm{H}$ NMR of rac 39
${ }^{13} \mathrm{C}$ NMR of rac 39

rac 39

\square
8
-

${ }^{19}$ F NMR of rac 39

2D NOESY of rac 39

Diagnostic fragments of 2D NOESY of rac 39

Stacked plots of ${ }^{\mathbf{1}} \mathbf{H}$ NMR (top) and 1D H-F HOESY (bottom) of rac 39

${ }^{1} \mathrm{H}$ NMR of rac 40a,b (6.7:1, d.r.)

rac 40a

rac 40b

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -11 |
| :--- |
| $f 1(\mathrm{ppm})$ | |

${ }^{13} \mathbf{C}$ NMR of rac 40a,b (6.7:1, d.r.)

rac 40a

${ }^{31} \mathrm{P}\left\{/{ }^{1} \mathrm{H}\right\}$ NMR of rac 40a,b (6.7:1, d.r.)

rac 41

${ }^{1} \mathrm{H}$ NMR of rac 41

[^8]

rac 41

${ }^{13} \mathrm{C}$ NMR of rac 42

rac 42

[^9]${ }^{19} \mathrm{~F}$ NMR of rac 42

rac 43

${ }^{31} \mathrm{P}\left\{/^{1} \mathrm{H}\right\}$ NMR of rac 42

${ }^{19} \mathrm{~F}$ NMR of rac 43

rac 43

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H} \mathbf{H}\right.$ NMR of rac 43

[^0]: rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-phenyl-3-(((S)-1-phenylethyl)amino)propyl) phosphonate (rac 15a) and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-phenyl-3-(((S)-1phenylethyl)amino)propyl)phosphonate (rac 15b) Procedure $\mathrm{B}\left((S)-\mathrm{PhCH}(\mathrm{Me}) \mathrm{NH}_{2}\right.$, TEA). Isolated as a mixture with 6 and 25, which could not be separated by the chromatography techniques employed in this study, oil 6/15a,b/25 with crude ratio 40/20/35\%, NMR (rac 15a,b $36 \mathrm{mg}, 22 \%$; $\mathbf{2 5}$ $18 \mathrm{mg}, 30 \%):{ }^{1} \mathrm{H}$ NMR: ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=7.70-7.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.42-7.28(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ph})$, 4.88 (dd, $J=45.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.74(\mathrm{dd}, J=45.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}$, OCH2), 4.13-4.02 (m, 4H, OCH 2), 3.99-3.88 (m, 2H, CHH), 3.84-3.81 (m, 2H, CHH), 2.94 (,,q", J $\left.=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.26\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.25\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.18$ $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-212.32$ (dd, $J=79.9,44.6 \mathrm{~Hz}, 1 \mathrm{~F}$), -212.10 (dd, $J=78.0,44.5 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.24(\mathrm{~d}, J=80.0 \mathrm{~Hz}), 15.97(\mathrm{~d}, J=78.3$ Hz). MS (EI) $m / z=394.2[\mathrm{M}-\mathrm{Me}]^{+}$.

[^1]: ${ }^{1} \mathrm{H}$ NMR of rac 17

[^2]: ${ }^{19} \mathrm{~F}$ NMR of rac 17

[^3]: ${ }^{13} \mathrm{C}$ NMR of rac 22

[^4]: ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H} \mathbf{H}\right.$ NMR of rac $\mathbf{2 2}$

[^5]:
 ${ }^{13} \mathbf{C}$ NMR of rac 24a,b (1:1, d.r.)

[^6]:
 ${ }^{19}$ F NMR of rac 28

[^7]: ${ }^{31} \mathbf{P}\{/ \mathbf{1} \mathbf{H}\}$ NMR of rac 34

[^8]:
 ${ }^{19} \mathrm{~F}$ NMR of rac 41

[^9]:

