

Supplementary Material

1 Supplementary Data

1.1. General procedures	1
2.1. Procedure A for oxiran 5,7-8 opening by secondary or primary amine	2
2.2. Procedure B for oxiran 6 opening by secondary or primary amine	2
2.3. Spectroscopic properties of compounds 10-12 14-16, 18-20, 22-24	2
3.1. Procedure C for hydrogenation and N-Boc protection of γ -amino- β -hydroxyphosphonates.	7
3.2. Procedure D for hydrogenation of monoesters of hydroxyalkylphosphonic acids	7
3.3. Spectroscopic properties of compounds 26-28	7
4.1. Procedure F for oxiran 5-8 opening by HBr	8
4.2. Spectroscopic properties of compounds 32-35	8
5.1. Procedure I for hydrogenation and N-Boc protection of β -azido- γ -hydroxyphosphonates	10
5.2. Spectroscopic properties of compounds 40-42	10
6. ¹ H, ¹³ C, ¹⁹ F NMR and ³¹ P NMR Spectra of Compounds	12

1.1. General informations

¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR spectra were performed on Bruker ASCEND 400 (400 MHz), Bruker ASCEND 600 (600 MHz), Varian Mercury (300 MHz), spectrometers, as is noted. The 2D and 1D selective NMR spectra were recorded on Bruker ASCEND 600 (600 MHz) or Bruker ASCEND 400 (400 MHz) spectrometers. Chemical shifts of ¹H NMR were expressed in parts per million downfield from tetramethylsilane (TMS) as an internal standard ($\delta = 0$) in CDCl₃. Chemical shifts of ¹³C NMR were expressed in parts per million downfield and upfield from CDCl₃ as an internal standard (δ 77.16) or CD₃OD (δ 49.00) or CF₃COOD (δ 164.2) or traces of solvent. Chemical shifts of ¹⁹F NMR were expressed in parts per million upfield from CFCl₃ as an internal standard (δ 0) in CDCl₃. Chemical shifts of ³¹P NMR were expressed in parts per million in CDCl₃. The yields of reaction and purity of the obtained products as well as diastereoisomers ratio (in crude reaction mixture) were conveniently evaluated by ¹⁹F or/and ³¹P NMR in CDCl₃ or by GC–MS method. GC–MS spectra were performed on Varian GC–MS 4000 spectrometer (conditions: flow rate of 1 mL/min, injector temperature = 220 °C, column oven temperature 40 °C (3 min) \rightarrow 15 °C/min \rightarrow

280 °C (10 min), using chloroform as the solvent. MS (ESI) spectra were performed on ZQ4000 Waters Mass Spectrometer. High-resolution mass spectra were recorded by electron spray (MS-ESI) techniques using QToF Impact HD Bruker spectrometer. IR analysis on spectrometer JASCO FT/IR-4600 were performed. Reagent grade chemicals were used and solvents were dried by refluxing with CaH₂ (CH₃CN) and distilled under an argon atmosphere. All moisture sensitive reactions were carried out under an argon atmosphere using oven-dried glassware. TLC was performed on Merck Kieselgel 60-F₂₅₄ with EtOAc/hexane or CHCl₃/MeOH as developing systems, and products were detected by inspection under UV light (254 nm) and a standard procedure (solution of phosphomolybdenic acid or KMnO₄). Merck Kieselgel 60 (230-400 mesh) was used for column chromatography. All starting materials (with an exception of Selectfluor) were supplied by Sigma Aldrich. Selectfluor was supplied by Apollo Scientific (UK). Sodium hydride as 60% dispersion in mineral oil was used. Absolute ethanol was stored under argon and over molecular sieves 3Å. All moisture sensitive reactions were carried out under argon atmosphere using oven dried glassware. Compounds from methyl series (R^1 =Me, R^2 = H) have to be carefully evaporated, dried and stored at around 4 °C. The etheral solution of diazomethane was prepared as described [52]. Compounds 1 [53], 2 [54], 3 [55], 4 [56] were prepared as described. The NMR data for 25 [35] was in good agreement.

1.2. Theoretical calculations

The quantum mechanical calculations of potential energy under vacuum at the M06/6-31+G** [57, 58] level of theory have been performed using the GAUSSIAN09 program,[59] in order to systematically search for possible conformations. The vibrational frequencies were calculated using the same method, and then their positivity was applied to confirm that each of the calculated structures corresponds to a minimum on the potential energy surface. To simplified the calculations, the ethoxyl substituents were replaced with methoxyl substituents for which several conformations were calculated with the aim of choosing the global minimum-energy structure.

2.1. General procedure (procedure A) for oxiran 5,7-8 opening by secondary or primary amine

General procedure (procedure A) for oxiran 5,7-8 ring opening by secondary or primary amine To the mixture of secondary or primary amine (0.48 mmol) and triethylamine (56 μ L, 40 mg, 0.4 mmol) dissolved in EtOH (2 mL) epoxide 5-8 (0.4 mmol) was added. Next, the reaction mixture was heated in an oil bath at 60°C during 24-60 h (monitoring by TLC). Then, reaction mixture was evaporated and purified by flash column chromatography (1 cm layer of silica gel) with CHCl₃ \rightarrow 5% MeOH/CHCl₃ (v:v) to give appropriate amino alcohols 9-12, 17-24.

2.2. General procedure (procedure B) for oxiran 6 opening by secondary or primary amine

To the mixture of secondary or primary amine (2 mmol) and triethylamine (279 μ L, 200 mg, 2 mmol) dissolved in EtOH (2 mL) epoxide **6** (0.4 mmol) was added. Next, the reaction mixture was heated in an oil bath at 60°C during 24-60 h (monitoring by TLC). Then the reaction mixture was diluted with CH₂Cl₂ (20 mL) and aqueous HCl (1M, 10 mL) was added. The mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined extracts were washed with aqueous sodium bicarbonate, brine, dried over Na₂SO₄, filtrated and concentrated under reduced pressure. The residue was purified by flash column chromatography (1 cm layer of silica gel) with CHCl₃ \rightarrow 5% MeOH/CHCl₃ (v:v) to give a mixture of **6**, appropriate aminoalcohols **13-16** and allylic alcohol **25**.

2.3. Spectroscopic properties of compounds 10-12, 14-16, 18-20 and 22-24

rac Diethyl ((1R,2R)-3-(benzylamino)-1-fluoro-2-hydroxy-2-methylpropyl)phosphonate (rac10a) Procedure A (BnNH₂, TEA), major isomer. Isolated as a mixture with 10b, which could not be separated by the chromatography techniques employed in this study; transparent oil (107 mg, 80%, 3:1 d.r.): ¹H NMR (400 MHz, CDCl₃) $\delta = 7.35 - 7.27$ (m, 5H, Ph), 4.69 (dd, J = 44.9, 5.5 Hz, 1H, CHF), 4.27 - 4.10 (m, 4H, OCH₂), 3.85 (s, 2H, NCH₂), 3.04 (d, J = 12.6 Hz, 1H, CHH), 2.63 (dd, J =12.6, 2.2 Hz, 1H, CHH), 1.39 - 1.33 (m, 9H, CH₃, OCH₂CH₃).¹³C NMR (101 MHz, CDCl₃) $\delta =$ 139.08, 128.52, 128.24, 127.33 (4 x s, Ph), 92.48 (dd, J = 187.2, 162.8 Hz, CFP), 72.01 (dd, J = 18.7, 2.9 Hz, COH), 63.73 (dd, J = 6.7, 1.5 Hz, OCH₂), 62.81 (d, J = 6.7 Hz OCH₂), 54.59 - 54.29 (m, CN), 54.13 (s, CH₂Ph), 23.35 (d, J = 4.3 Hz, CH₃), 16.41 (d, J = 6.2 Hz, OCH₂CH₃), 16.34 (d, J = 6.1Hz, OCH₂CH₃). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -213.98$ (dd, J = 77.0, 44.9 Hz, 1F). ³¹P{/¹H} NMR (162 MHz, CDCl₃) $\delta = 16.61$ (d, J = 77.1 Hz, 1P). MS (EI) m/z = 333.3 [M]⁺

rac Diethyl ((*1R*,2*S*)-*3*-(*benzylamino*)-*1*-*fluoro*-*2*-*hydroxy*-*2*-*methylpropyl*)*phosphonate* (rac **10b**) minor isomer: ¹H NMR (400 MHz, CDCl₃) δ = 7.35 – 7.27 (m, 5H, Ph), 4.96 (dd, *J* = 44.6, 3.0 Hz, 1H, C*H*F), 4.27 – 4.10 (m, 4H, OC*H*₂), 3.84 (s, 2H, NCH₂), 2.90 (dd, *J* = 12.4, 2.1 Hz, 1H, C*H*H), 2.64 (dd, *J* = 12.3, 2.3 Hz, 1H, C*H*H), 1.39 – 1.33 (m, 9H, C*H*₃, OCH₂C*H*₃). ¹⁹F NMR (377 MHz, CDCl₃) δ = -210.74 (dd, *J* = 71.5, 44.4 Hz). ³¹P{/¹H} NMR (162 MHz, CDCl₃) δ = 17.69 (d, *J* = 71.6 Hz).

rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1-phenylethyl)amino)propyl) phosphonate (rac **11a**) and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1phenylethyl)amino)propyl)phosphonate (rac 11b) Procedure A ((S)-PhCH(Me)NH₂, TEA), major isomers: isolated as a mixture with **11'a,b**, which could not be separated by the chromatography techniques employed in this study; transparent oil (111 mg, 80%, crude 11a:11b/11'a:11'b, 3:3/1:1, d.r.): ¹H NMR (400 MHz, CDCl₃) $\delta = 7.36 - 7.30$ (m, 10H, Ph), 4.65 (dd, J = 44.9, 5.5 Hz, 1H, CHF), 4.63 (dd, J = 44.8, 5.7 Hz, 1H, CHF), 4.34 – 4.14 (m, 8H, OCH₂), 4.12 – 3.99 (m, 2H, CHH), 3.97 (dt, J = 14.4, 6.8 Hz, 2H, CHH), 3.79 (q, J = 6.6 Hz, 1H, CHMe), 3.79 (d, J = 6.6 Hz, 1H, CHMe), 1.44 – 1.29 (m, 24H, OCH₂CH₃, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 144.79, 144.59 (2 x s, Ph), 128.70 (d, J = 2.4 Hz, Ph), 128.61, 127.29, 127.23, 126.80, 126.67 (5 x s, Ph), 92.80 (dd, J = 187.2, 163.1 Hz, CFP), 92.74 (dd, J = 187.4, 162.8 Hz, CFP), 72.03 (dd, J = 18.5, 2.9 Hz, COH), 71.77 (dd, J = 18.9, 2.5 Hz, COH), 63.80 (d, J = 6.8 Hz, OCH₂), 63.74 (d, J = 7.1 Hz OCH₂), 62.91 $(d, J = 6.9 \text{ Hz}, \text{ OCH}_2), 62.80 (d, J = 7.3 \text{ Hz}, \text{ OCH}_2), 59.16 (s, CH(CH_3)), 58.84 (s, CH(CH_3)), 53.45 -$ 53.01 (m, 2 x CN), 24.25 (s, CH_3), 23.97 (s, CH_3), 23.15 (d, J = 4.1 Hz, CH_3), 23.11 (d, J = 4.1 Hz, CH₃), 16.50 (d, J = 6.0 Hz, OCH₂CH₃), 16.44 (d, J = 6.0 Hz, OCH₂CH₃). ¹⁹F NMR (377 MHz, CDCl₃) $\delta = -213.63$ (dd, J = 77.5, 44.8 Hz, 1F), -214.06 (dd, J = 77.4, 44.9 Hz, 1F). ³¹P{/¹H} NMR (162 MHz, CDCl₃) $\delta = 16.72$ (d, J = 77.6 Hz, 1P), 16.61 (d, J = 77.4 Hz, 1P). MS (EI) m/z = 348.1 $[M+H]^+$

rac Diethyl ((1R,2S)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1-phenylethyl)amino)propyl) phosphonate (rac 11'a) and diethyl ((1S,2R)-1-fluoro-2-hydroxy-2-methyl-3-(((S)-1-phenylethyl)amino)propyl) phosphonate (rac 11'b) Minor isomers: 11'a:11'b (1:1, d.r.): ${}^{31}P{/}^{1}H$ } NMR (162 MHz, CDCl₃) δ = 18.06 (d, J = 71.0 Hz, 1P), 17.61 (d, J = 72.5 Hz, 1P). ${}^{19}F$ NMR (377 MHz, CDCl₃) δ = -210.47 (ddd, J = 72.3, 44.8, 1.5 Hz, 1F), -210.49 (ddd, J = 70.8, 44.4, 1.5 Hz, 1F).

rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-methyl-3-(methyl((R)-1-phenylethyl)amino) propyl)phosphonate (rac 12a) and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-methyl-3-(methyl((R)-1-phenylethyl)amino)propyl)phosphonate (rac 12b) Procedure A ((R)-PhCH(Me)NH(Me), TEA),

major isomers: isolated as a mixture with 12'a,b, which could not be separated by the chromatography techniques employed in this study; transparent oil (120 mg, 83%), crude 12a:12b/12'a:12'b, 3:3/1:1, d.r.): ¹H NMR (400 MHz, CDCl₃) $\delta = 7.54 - 7.48$ (m, 4H, Ph), 7.42 -7.33 (m, 6H, Ph), 4.67 (ddd, J = 44.7, 4.8, 2.7 Hz, 1H, CHFP), 4.62 (ddd, J = 45.7, 14.2, 5.4 Hz, 1H, CHFP), 4.30 - 4.14 (m, 4H, OCH₂, CHCH₃), 4.13 - 4.01 (m, 2H, OCH₂), 4.04 - 3.90 (m, 2H, OCH₂), 3.91 – 3.83 (m, 2H, OCH₂), 2.87 – 2.52 (m, 2H, CHH), 2.84 (d, J = 14.1 Hz, 1H, CHH), 2.78 (d, J = 14.1 Hz, 1H, CHH), 2.35 (s, 6H, CH₃), 2.29 (s, 1H, OH), 2.27 (s, 1H, OH), 1.68 (d, J = 6.7Hz, 6H, CH₃), 1.43 - 1.36 (m, 12H, OCH₂CH₃), 1.34 - 1.27 (m, 6H, CH₃). ¹³C NMR (151 MHz, CDCl₃): δ = 135.99, 129.20, 129.03, 128.04 (4 x s, Ph), 92.32 (dd, *J* = 187.8, 166.3 Hz, *C*FP), 92.10 (dd, J = 188.4, 163.6 Hz, CFP), 72.01 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 17.4 Hz, COH), 71.67 (d, J = 20.2 Hz, COH), 63.57 (d, J = 10.2 Hz, COH), 71.67 (d, J = 10.2 Hz, COH), 63.57 (d, J = 10.2 Hz, COH), 63.57 (d, J = 10.2 Hz, COH), 63.57 (d, J = 10.2 Hz, COH), 71.67 (d, J = 10.2 Hz, COH), 63.57 (d, J = 10.2 Hz, COH), 71.67 (d, JJ = 7.6 Hz, $CHCH_3$), 63.56 (d, J = 7.6 Hz, $CHCH_3$), 63.42 (d, J = 6.9 Hz, OCH_2), 63.07 (d, J = 6.7Hz, OCH₂), 55.45 (d, J = 9.2 Hz, CN), 55.30 (d, J = 9.2 Hz, CN), 50.73 (s, CHCH₃), 50.71 (s, $CHCH_3$, 43.32 (s, CH_3), 41.34 (s, CH_3), 22.75 (s, CH_3), 22.70 (s, CH_3), 21.96 (d, J = 2.0 Hz, CH_3), 21.94 (d, J = 1.7 Hz, CH_3), 16.43 (d, J = 3.8 Hz, OCH_2CH_3), 16.37-16.33 (m, OCH_2CH_3), 16.31 (d, J= 5.8 Hz, OCH₂CH₃). ¹⁹F NMR(376 MHz, CDCl₃) δ = -213.42 (dd, J = 79.9, 45.8 Hz, 1F), -213.43 (dd, J = 79.9, 45.8 Hz, 1F). ³¹P $\{/^{1}\text{H}\}$ NMR (162 MHz, CDCl₃) $\delta = 13.40$ (d, J = 80.0 Hz, 1P), 16.11 (br d, J = 78.2 Hz, 1P). GC–MS (EI) m/z = 362.2 [M+H]⁺.

rac Diethyl ((1R,2S)-1-fluoro-2-hydroxy-2-methyl-3-(methyl((R)-1-phenylethyl)amino) propyl) phosphonate (rac 12'a) and diethyl ((1S,2R)-1-fluoro-2-hydroxy-2-methyl-3-(methyl((R)-1phenylethyl)amino)propyl)phosphonate (rac 12'b) Minor isomers: 12'a:12'b (1:1, d.r.): ¹⁹F NMR (376 MHz, CDCl₃) δ = -215.41 (dd, J = 78.3, 44.7 Hz, 2F). ³¹P{/¹H} NMR (162 MHz, CDCl₃) signals masked by major isomers.

rac Diethyl ((*1R,2R*)-3-(*benzylamino*)-1-*fluoro*-2-*hydroxy*-2-*phenylpropyl*)*phosphonate* (rac 14) Procedure B (BnNH₂, TEA). Isolated as a mixture with **6** and **25**, which could not be separated by the chromatography techniques employed in this study (6/14/25 crude ratio: 50/20/30, NMR), slightly creamy-colored oil (rac 14, 32 mg, 20%; 25 17 mg, 28%): ¹H NMR (300 MHz, CDCl₃): δ = 7.20 – 7.51 (m, 15H, Ph), 5.10 (s, 1H, OH), 4.79 (dd, *J* = 45.0, 5.9 Hz, 1H, C*H*F), 4.03 – 4.15 (m, 2H, OCH₂), 3.82 – 3.75 (m, 2H, OCH₂), 3.59 (d, *J* = 12.7 Hz, 1H, C*H*HPh), 3.37 (d, *J* = 13.5 Hz, 1H, C*H*HPh), 3.32 (dd, *J* = 13.6, 1.8 Hz, 1H, C*H*H), 3.12 (dd, *J* = 13.6, 1.2 Hz, 1H, CH*H*), 1.23 (td, *J* = 7.1, 0.5 Hz, 3H, OCH₂C*H*₃), 1.02 (td, *J* = 7.1, 0.4 Hz, 3H, OCH₂C*H*₃). ¹⁹F NMR: δ = -212.15 (dd, *J* = 81.8, 45.0 Hz); ³¹P{/¹H} NMR δ = 15.96 (d, *J* = 81.8 Hz). MS (EI) *m/z* = 395.3 [M]⁺

rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-phenyl-3-(((S)-1-phenylethyl)amino)propyl) phosphonate diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-phenyl-3-(((S)-1-(rac 15a) and phenylethyl)amino)propyl)phosphonate (rac 15b) Procedure B ((S)-PhCH(Me)NH₂, TEA). Isolated as a mixture with 6 and 25, which could not be separated by the chromatography techniques employed in this study, oil 6/15a,b/25 with crude ratio 40/20/35%, NMR (rac 15a,b 36 mg, 22%; 25 18 mg, 30%): ¹H NMR: (300 MHz, CDCl3) δ = 7.70 - 7.58 (m, 4H, Ph), 7.42 - 7.28 (m, 16H, Ph), 4.88 (dd, J = 45.1, 5.9 Hz, 1H, CHF), 4.74 (dd, J = 45.3, 5.5 Hz, 1H, CHF), 4.18 (q, J = 7.1Hz, 4H, OCH2), 4.13-4.02 (m, 4H, OCH2), 3.99 - 3.88 (m, 2H, CHH), 3.84-3.81 (m, 2H, CHH), 2.94 (,,q", J = 7.0 Hz, 2H, CHCH₃), 1.26 (t, J = 7.1 Hz, 6H, OCH₂CH₃), 1.25 (t, J = 6.9 Hz, 6H, OCH₂CH₃), 1.18 (d, J = 6.8 Hz, 6H, CH₃).¹⁹F NMR (283 MHz, CDCl₃): δ -212.32 (dd, J = 79.9, 44.6 Hz, 1F), -212.10 (dd. J = 78.0, 44.5 Hz, 1F).³¹P NMR (162 MHz, CDCl₃): δ 16.24 (d, J = 80.0 Hz), 15.97 (d, J = 78.3Hz). MS (EI) $m/z = 394.2 \text{ [M-Me]}^+$.

rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-3-(methyl((R)-1-phenylethyl)amino)-2-phenylpropyl) phosphonate and *rac* diethyl ((1S,2S)-1-fluoro-2-hydroxy-3-(methyl((R)-1-phenylethyl)amino)-2-phenylpropyl)phosphonate (*rac*16a,b) Procedure B ((R)-PhCH(Me)NH(Me), TEA). Isolated as a mixture with 6 and 25, which could not be separated by the chromatography techniques employed in this study, oil 6/16a,b/25 with crude ratio 20/40/40%, NMR) (rac16a,b 59 mg, 35%, 1:1, d.r.; 25 19 mg, 32%): ¹H NMR (300 MHz, CDCl₃): $\delta = 7.65 - 7.55$ (m, 8H), 7.38 - 7.28 (m, 12H), 5.02 (dd, J = 46.1, 5.9 Hz, 1H, CHF), 4.94 (dd, J = 46.3, 5.5 Hz, 1H, CHF), 4.15 (dq, J = 7.1, 0.6 Hz, 2H, OCH₂), 3.99 - 3.88 (m, 2H, CHH), 3.84 (q, J = 6.7 Hz, 4H, OCH₂), 3.64 - 3.60 (m, 1H, CHH), 2.94 (q, J = 7.0 Hz, 2H, CHCH₃), 2.95 - 2.93 (m, 1H, CHH), 1.28 (td, J = 7.1, 0.6 Hz, 6H, OCH₂CH₃), 1.27 (t, J = 6.9 Hz, 6H, OCH₂CH₃), 1.19 (d, J = 6.8 Hz, 6H, CH₃); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -211.32$ (dd, J = 80.0, 44.6 Hz, 1F), -211.60 (dd, J = 79.0, 44.5 Hz, 1F); ³¹P{/¹H} NMR (162 MHz, CDCl₃): $\delta = 15.84$ (d, J = 80.9 Hz), 15.97 (d, J = 81.3 Hz). MS (EI) m/z = 408.4 [M-Me]⁺.

rac Ethyl hydrogen ((2R,3S)-4-(benzylamino)-2-fluoro-3-hydroxy-3-phenylbutan-2yl)phosphonate (rac 18) Procedure A (BnNH₂, TEA), reaction time 60h; white solid (127 mg, 83%): ¹H NMR (400 MHz, CDCl₃) δ = 7.44 – 7.20 (m, 10H, Ph), 6.18 (s, 2H, NH, OH), 4.05 (q, *J* = 7.3 Hz, 2H, OCH₂), 3.95 – 3.71 (m, 3H, CHH, NCH₂Ph), 3.17 (d, *J* = 12.9 Hz, 1H, CHH), 1.24 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃), 1.06 (dd, *J* = 25.2, 11.6 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ = 142.09 (d, *J* = 9.3 Hz, Ph), 140.11, 129.41, 128.75, 128.39, 128.07, 127.77 (6 x s, Ph), 126.04 (d, *J* = 3.1 Hz, Ph), 98.03 (dd, *J* = 188.2, 150.8 Hz, CFP), 77.29 (d, *J* = 11.2 Hz, COH), 62.48 (dd, *J* = 6.4, 3.0 Hz, OCH₂), 52.68 (s, CH₂Ph), 51.99 (s, CN), 20.07 (dd, *J* = 20.9, 3.2 Hz, CH₃), 16.85 (d, *J* = 6.1 Hz, OCH₂CH₃); ¹⁹F NMR (377 MHz, CDCl₃) δ = -170.16 (dq, *J* = 73.0, 25.1 Hz); ³¹P{/¹H} NMR (162 MHz, CDCl₃) δ = 15.50 (d, *J* = 72.9 Hz). MS (ESI) calc. for C₁₉H₂₆FNO₄P 382.151, found 382.30.

Ethyl ((2R,3S)-2-fluoro-3-hydroxy-3-phenyl-4-(((S)-1-phenylethyl)amino)butan-2hydrogen yl)phosphonate (rac 19a) and ethyl hydrogen ((2S,3R)-2-fluoro-3-hydroxy-3-phenyl-4-(((S)-1phenylethyl)amino)butan-2-yl)phosphonate (rac 19b) Procedure A ((S)-PhCH(Me)NH₂, TEA), reaction time 60h; white solid (123 mg, 78%, 1:1, d.r.): ¹H NMR (300 MHz, CDCl₃) $\delta = 7.45 - 7.24$ (m, 20H, Ph), 4.24 - 4.01 (m, 4H, OCH₂), 4.04 - 3.91 (m, 2H, CHCH₃), 3.80 (d, J = 14.4 Hz, 1H, CHH), 3.69 (d, J = 13.3 Hz, 1H, CHH), 2.96 (dd, J = 13.2, 2.8 Hz, 1H, CHH), 2.91 (dd, J = 13.2, 2.8 Hz, 1H, CHH), 2.37 (s, 2H, OH), 1.68 (d, J = 6.6 Hz, 3H, CH₃), 1.65 (d, J = 6.6 Hz, 3H, CH₃), 1.29 (t, J = 7.4 Hz, 3H, OCH₂CH₃), 1.28 (t, J = 7.4 Hz, 3H, OCH₂CH₃), 1.16 (d, d, J = 25.2, 11.4 Hz, 3H, CH₃), 1.04 (dd, J = 25.1, 11.3 Hz, 1H, CH₃). ¹³C NMR (76 MHz, CDCl3) $\delta = 142.81$ (d, J = 9.1 Hz, Ph), 142.69 (d, J = 9.2 Hz, Ph), 138.34, 137.63, 129.08, 129.03, 128.87, 128.71, 128.67, 128.48, 128.44, 128.27, 127.71, 127.63 (12 x s, Ph), 125.57 (d, J = 2.9 Hz, Ph), 125.45 (d, J = 3.0 Hz, Ph), 98.54 (dd, J = 187.9, 151.1 Hz, CFP), 98.37 (dd, J = 188.1, 150.8 Hz, CFP), 77.36 (COH), 62.75 (d, J = 6.7 Hz, OCH₂), 62.70 (d, J = 6.5 Hz, OCH₂), 58.94 (s, CHCH₃), 58.59 (CHCH₃), 51.33 (d, J =6.3 Hz, CN), 50.73 (d, J = 6.3 Hz, CN), 21.45 (br s, CH₃), 20.88 (d, J = 20.8 Hz, CH₃), 20.89 (d, J = 10.4 Hz, CH₃), 20.80 (d, J = 10.4 Hz, CH₃), 20.80 (d, J = 10.4 Hz, CH₃), 20 20.8 Hz, CH₃), 16.98 (d, J = 6.2 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) $\delta = -170.22$ (dq, J =73.5, 25.2 Hz, 1F), -171.54 (dq, J = 73.9, 25.1 Hz, 1F). ³¹P {/¹H} NMR (122 MHz, CDCl3) $\delta = 15.48$ (d, J = 71.4 Hz, 1P), 15.06 (d, J = 72.1 Hz, 1P). MS (ESI) calc for $C_{20}H_{28}FNO_4P^+$ 396.173, found 396.23.

rac Ethyl hydrogen ((2R,3S)-2-fluoro-3-hydroxy-4-(methyl((R)-1-phenylethyl)amino)-3phenylbutan-2-yl)phosphonate (rac 20a) and ethyl hydrogen ((2S,3R)-2-fluoro-3-hydroxy-4-(methyl((R)-1-phenylethyl)amino)-3-phenylbutan-2-yl)phosphonate (rac 20b) Procedure A ((R)-PhCH(Me)NH(Me), TEA), reaction time 72h, precipitating solid from oil (131 mg, 80%, 1:1 d.r.): ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.52 (m, 4H, Ph), 7.41 – 7.27 (m, 16H, Ph), 4.22 – 3.95 (m, 6H, OCH₂, OH), 3.48 (q, *J* = 7.0 Hz, 2H, CHCH₃), 2.95 – 2.86 (m, 2H, CHH), 2.56 – 2.52 (m, 2H, CHH), 2.38 (s, 6H, CH₃), 1.72 (d, *J* = 6.8 Hz, 6H, CH₃), 1.31 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃), 1.21 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃), 1.17 – 1.01 (m, 6H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 144.12 (d, *J* = 7.8 Hz), 142.65 (d, *J* = 8.9 Hz), 141.51, 140.52, 128.45, 128.39, 128.23, 127.92, 127.88, 127.60, 127.14, 126.98, 126.76 (11 x s, Ph), 98.95 (dd, *J* =, 180.5, 156.9 Hz, CFP), 98.78 (dd, *J* = 185.4, 154.1 Hz, CFP), 78.21 (s, COH), 75.82 (s, COH), 62.34 (d, *J* = 6.5 Hz, OCH₂), 61.87 (d, *J* = 6.5 Hz, OCH₂), 58.19 (s, CHCH₃), 58.18 (s, CHCH₃), 57.68 (br d, *J* = 5.3 Hz, CN), 37.94 (s, CH₃), 36.68 (s, CH₃), 23.31 – 22.59 (m, CH₃), 20.82 (d, *J* = 20.5 Hz, CH₃), 20.11 (d, *J* = 21.0 Hz, CH₃), 16.67 (d, *J* = 6.7 Hz, OCH₂CH₃), 16.51 (d, *J* = 7.9 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) δ -171.73 (ddt, *J* = 75.2, 25.1 Hz), -171.45 (dq, *J* = 75.9, 25.0 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) δ 16.56 (dd, *J* = 75.3, 3.6 Hz), 16.35 (d, *J* = 74.3 Hz). MS (ESI) calc. for C₂₁H₃₀FNO₄P 410.19, found 410.20 [M+H]⁺.

rac Diethyl ((*1R*,*2R*)-2-((*benzylamino*)*methyl*)-*1-fluoro*-2-*hydroxycyclohexyl*)*phosphonate* (rac 22) Procedure A (BnNH₂, TEA), slightly yellow oil (119 mg, 81%): ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32 - 7.22$ (m, 5H, Ph), 4.19 – 4.10 (m, 4H, OCH₂), 3.87 (d, *J* = 13.4 Hz, 1H, CHHPh), 3.84 (d, *J* = 13.5 Hz, 1H, CHHPh), 3.45 (dd, *J* = 13.0, 1.6 Hz, 1H, CHH), 2.32 (d, *J* = 13.0 Hz, 1H, CHH), 2.25 – 2.11 (m, 1H, CHH), 2.09 – 2.00 (m, 1H, CHH), 1.75 – 1.68 (m, 2H, CH₂), 1.68 – 1.61 (m, 2H, CH₂), 1.60 – 1.52 (m, 2H, CH₂), 1.53 – 1.43 (m, 2H, CH₂), 1.31 (t, *J* = 7 Hz, 3H, OCH₂CH₃), 1.30 (t, *J* = 7 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃): $\delta = 140.28$, 128.10, 127.1, 126.1 (4 x s, Ph), 96.14 (dd, *J* = 185.3, 165 Hz, CFP, C1), 71.24 (dd, *J* = 24.9, 2.1 Hz, COH, C2), 63.80 (dd, *J* = 6.5 Hz, OCH₂), 62.2 (d, *J* = 6.0 Hz, OCH₂), 52.10– 52.04 (m, CN), 51.74 (s, CH₂Ph), 35.43 (d, *J* = 8.4 Hz, CH₂, C3), 28.67 (dd, *J* = 19.5, 2 Hz, CH₂, C6), 19.69 (s, CH₂, C4), 19.16 (dd, *J* = 9.1, 3.1 Hz, CH₂, C5), 15.4 (d, *J* = 5.7 Hz, OCH₂CH₃), 15.3 (d, *J* = 6.1 Hz, OCH₂CH₃). ¹⁹F NMR (377 MHz, CDCl₃) $\delta = -181.26$ (d, *J* = 86.3 Hz,). ³¹P{/¹H} NMR (162 MHz, CDCl₃) $\delta = 20.53$ (d, *J* = 88.6 Hz). GC–MS (EI) *m/z* = 354.2 [M-F]⁺, *t_R* = 15.48 min.

Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-((((S)-1-phenylethyl)amino)methyl)cyclohexyl) rac (rac and diethyl ((1S,2S)-1-fluoro-2-hydroxy-2-((((S)-1phosphonate 23a) phenylethyl)amino)methyl)cyclohexyl)phosphonate (rac 23b) Procedure A ((S)-PhCH(Me)NH₂, TEA), slightly yellow oil (121 mg, 78%, 1:1 d.r.): ¹H NMR (400 MHz, CDCl₃): $\delta = 7.29 - 7.18$ (m, 10H, Ph), 4.16 - 4.09 (m, 8H, OCH₂), 3.80 (q, J = 7 Hz, 1H, CHCH₃), 3.69 (q, J = 7 Hz, 1H, CHCH₃), 3.33 (dd, J = 13.1, 1.7 Hz, 1H, CHH), 3.24 (dd, J = 13.1, 1.2 Hz, 1H, CHH), 2.13 (d, J = 13.0 Hz, CH_2 , 1H, CHH), 2.07 (d, J = 13.0 Hz, CH_2 , 1H, CHH), 2.10 – 1.99 (m, 4H, CH_2), 1.73 – 1.59 (m, 4H, CH₂), 1.56 – 1.50 (m, 4H, CH₂), 1.49 – 1.43 (m, 4H, CH₂), 1.38 (d, J = 7 Hz, 6H, CH₃), 1.34 - 1.27 (m, 12H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃): $\delta = 145.58, 145.2.6, 128.47, 128.37,$ 126.79, 126.29 (6 x s, Ph), 97.77 (dd, J = 187.3,165.2 Hz, CFP, C1), 97.67 (dd, J = 185.4, 164.9 Hz, *C*FP, C1), 70.28 (dd, *J* = 20.0, 2 Hz, COH, C2), 70.22 (dd, *J* = 19.9, 2.1 Hz, COH, C2), 63.16 (dd, *J* =6.8, 2.0 Hz, OCH₂), 63.13 (dd, J = 7.1, 0.9 Hz, OCH₂CH₃), 62.74 (d, J = 7.2 Hz, OCH₂), 62.65 (d, J= 6.8 Hz, OCH₂), 59.30 (s, CH₃), 58.30 (s, CH₃), 52.75 (dd, J = 3.1, 1.3 Hz, CN), 52.05 (dd, J = 3.5, 1.3 Hz 2.3 Hz, CN), 34.70 (d, J = 8.9 Hz, CH₂ C3), 34.55 (d, J = 8.7 Hz, CH₂ C3), 29.10 (dd, J = 18.7 Hz, 2.1 Hz, CH_2 , C6), 28.90 (dd, J = 18.5, 2.0 Hz, CH_2 , C6), 24.46 (s, CH_3), 24.30 (s, CH_3), 20.53 (d, J = 12.5, CH_2 , CG), 24.46 (s, CH_3), 20.53 (d, J = 12.5, CH_3), 20.55 (d, J = 12.5, 1.0 Hz, CH_2 , C4), 20.52 (d, J = 1.3 Hz, CH_2 , C4), 19.76 (dd, J = 8.7, 2.7 Hz, CH_2 , C5), 19.67 (dd, J = 1.3 Hz, CH_2 , CH_2 , 9.0, 3.0 Hz, CH_2 , C5), 16.46 (d, J = 5.6 Hz, OCH_2CH_3) 16.44 (d, J = 5.8 Hz, OCH_2CH_3), 16.43 (d, J= 5.6 Hz, OCH₂CH₃), 16.42 (d, J = 6.0 Hz, OCH₂CH₃). ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -181.0 - -$

182.0 (m, 2F).³¹P{/¹H} NMR (162 MHz, CDCl₃): δ = 20.63 (d, *J* = 89.1 Hz), 20.61 (d, *J* = 90.0 Hz). GC–MS (EI) *m*/*z* = 388.2 [M+H]⁺; *t_R* 18.8 min.

rac Diethyl ((1R,2R)-1-fluoro-2-hydroxy-2-((methyl((R)-1-phenylethyl)amino)methyl) cyclohexyl) ((1S,2S)-1-fluoro-2-hydroxy-2-((methyl((R)-1phosphonate (rac 24a) and diethyl phenylethyl)amino)methyl)cyclohexyl)phosphonate Procedure (rac 24b) А ((R)-PhCH(Me)NH(Me), TEA), slightly yellow oil (133 mg, 83% yield, 1:1 d.r.): ¹H NMR (400 MHz, $CDCl_3$): $\delta = 7.27 - 7.22$ (m, 10H, Ph), 4.15 - 4.04 (m, 8H, OCH_2), 3.98 (s, 1H, OH), 3.96 (s, 1H, OH), 3.81 (q, J = 7.2 Hz, 1H, CHCH₃), 3.64 (q, J = 7.2 Hz, 1H, CHCH₃), 3.49 (d, J = 13.4 Hz, 1H, CHH), 3.29 (d, J = 13.7 Hz, 1H, CHH), 2.43 (d, J = 15.7 Hz, 1H, CHH), 2.39 (d, J = 14.8 Hz, 1H, CHH), 2.21 (d, J = 6.7 Hz, 6H, CH₃), 2.19 (s, 6H, CH₃), 2.05 – 1.85 (m, 8H, CH₂), 1.63 – 1.40 (m, 12H, CH₂), 1.33 (d, J = 6.6 Hz, 6H, CH₃), 1.29 – 1.23 (m, 12H, OCH₂CH₃). ¹³C NMR (101 MHz, $CDCl_3$: $\delta = 141.79, 141.45, 127.48$ (3 x s, Ph), 127.02 (d, J = 2.0 Hz, Ph), 126.93 (d, J = 1.9 Hz, Ph), 126.61 (s, Ph), 126.19 (s, Ph), 96.98 (dd, J = 196.6, 155.2 Hz, CFP, C1), 97.00 (dd, J = 196.5, 156.0 Hz, CFP, C1), 70.93 (dd, J = 22.7, 1.2 Hz, COH, C2), 70.27 (dd, J = 23, 1 Hz, COH, C2), 62.65 (s, CH_3 , 61.98 (s, CH_3), 61.87 (d, J = 6.5 Hz, OCH_2), 61.78 (d, J = 6.3 Hz, OCH_2), 61.74 (d, J = 7.0 Hz, OCH_2), 61.73 (d, J = 7.8 Hz, OCH_2), 58.63 (br s, CN), 58.36 (br s, CN), 38.39 (s, CH₃), 38.14 (s, CH_3 , 34.18 (dd, J = 7.7 Hz, 1 Hz, CH_2 , C3), 33.23 (dd, J = 7.3 Hz, 0.9 Hz, CH_2 , C3), 28.83 (dd, J = 7.5 Hz, 0.9 20.0 Hz, 2.1 Hz, CH₂, C6), 28.56 (dd, J = 19.5 Hz, 2.7 Hz, CH₂, C6), 22.30 (s, 2 x CH₃), 19.57 (d, J =0.8 Hz, CH₂, C4), 19.43 (d, J =0.6 Hz, CH₂, C4), 19.21 (br s, CH₂, C5), 19.15 (br s, CH₂, C5), 15.48 $(d, J = 5.6 \text{ Hz}, \text{OCH}_2\text{CH}_3)$, 15.44 $(d, J = 5.5 \text{ Hz}, \text{OCH}_2\text{CH}_3)$, 15.43 $(d, J = 5.6 \text{ Hz}, \text{OCH}_2\text{CH}_3)$, 15.41 (d, J = 5.6 Hz, OCH₂CH₃). ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -180.45$ (br s). ³¹P{/¹H} NMR (162) MHz, CDCl₃): $\delta = 20.11$ (d, J = 85.8 Hz). GC–MS m/z = 402 [M+H]⁺; R_t 19.2 min., m/z = 402 $[M+H]^+$; $t_R = 19.3$ min.

3.1. General procedure (procedure C) for hydrogenation and N-Boc protection of γ -amino- β -hydroxyphosphonates.

A solution of *N*,*N*-dibenzyl protected hydroxyphosphonate (0.3 mmol) in EtOH (2 mL) containing Boc₂O (98 mg, 0.45 mmol) was hydrogenated over 10% Pd-C (30 mg) under atmospheric pressure for 48h. Then, the catalyst was filtrated through Celite with MeOH, the solution was concentrated on vacuum, and purified by flash column chromatography CHCl₃ \rightarrow 5% MeOH/CHCl₃ (v:v), (1 cm layer of silica gel) to give appropriate *N*-Boc protected amino hydroxyphosphonate.

3.2. General procedure (procedure D) for hydrogenation of monoesters of hydroxyalkylphosphonic acids.

A solution of monoester of *N*,*N*-dibenzyl protected or azido- hydroxyphosphonic acid **17** or **38** (0.3 mmol) in absolute EtOH (2 mL) was hydrogenated over 10% Pd-C (30 mg) under atmospheric pressure for 48h. Then, the catalyst was filtrated through Celite with MeOH, the solution was concentrated on vacuum, and purified by flash column chromatography $CHCl_3 \rightarrow 5\%$ MeOH/CHCl₃ (v:v) (1 cm layer of silica gel) to give monoester of amino hydroxyphosphonic acid **27**.

3.3. Spectroscopic properties of compounds **26-28** (*procedures C,D*)

rac Tert-butyl ((2R,3R)-3-(diethoxyphosphoryl)-3-fluoro-2-hydroxy-2-methylpropyl)carbamate (rac **26a**) Procedure C, major isomer. Isolated as a mixture with **26b**, which could not be separated by the chromatography techniques employed in this study transparent oil (88 mg, 85%, 4:1 d.r.): ¹H NMR (300 MHz, CDCl₃) δ = 5.18 (br s, 1H, NH), 4.63 (dd, *J* = 45.1, 5.5 Hz, 1H, CHFP), 4.29 – 4.19 (m,

3H, OCH₂), 4.11 (dq, J = 7.9, 7.1 Hz, 1H, OCH*H*), 3.51 – 3.39 (m, 1H, C*H*HN), 3.41 – 3.33 (m, 1H, CH*H*N), 1.45 (s, 9H, C(CH₃)₃), 1.42 – 1.34 (m, 9H, CH₃, 2 x OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) $\delta = 157.20$ (s, CO), 91.87 (dd, J = 188.9, 161.8 Hz, CFP), 79.87 (s, C(CH₃)₃), 73.59 (d, J = 18.3 Hz, COH), 64.25 (d, J = 7.1 Hz, OCH₂), 63.08 (d, J = 6.9 Hz, OCH₂), 47.22 – 46.91 (m, CN), 28.45 (s, C(CH₃)₃), 21.97 (t, J = 4.1 Hz, CH₃), 16.49 (d, J = 5.5 Hz, OCH₂CH₃), 16.47 (d, J = 5.5 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) $\delta = -215.57$ (dd, J = 78.4, 45.2 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) $\delta = 17.06$ (d, J = 76.3 Hz). IR (film): v = 3349, 2980, 2933, 1712, 1518, 1392, 1367, 1246, 1167, 1029, 974 cm⁻¹ MS (EI) *m/z* = 343.5 [M]⁺.

rac Tert-butyl ((2S,3R)-3-(diethoxyphosphoryl)-3-fluoro-2-hydroxy-2-methylpropyl)carbamate (rac **26b**) minor isomer: ¹H NMR (300 MHz, CDCl₃) δ = 5.18 (br s, 1H, N*H*), 4.42 (dd, *J* = 45.8, 7.8 Hz, 1H, C*H*FP), 4.29 – 4.19 (m, 4H, OC*H*₂), 3.41 – 3.33 (m, 1H, C*H*HN), 3.20 – 3.10 (m, 1H, CH*H*N), 1.45 (s, 9H, C(C*H*₃)₃), 1.42 – 1.34 (m, 9H, C*H*₃, OCH₂C*H*₃). ¹⁹F NMR (283 MHz, CDCl₃) δ = -212.13 (dd, *J* = 69.4, 45.3 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) δ = 17.81 (d, *J* = 71.7 Hz).

rac Ethyl ((*2R,3S*)-*4-ammonio-2-fluoro-3-hydroxy-3-phenylbutan-2-yl)phosphonate* (rac 27) Procedure D. white solid (72 mg, 82%). Alternatively, compound rac 27 can be obtain from rac 38 by procedure D (65 mg, 75%): ¹H NMR (300 MHz, CD₃OD) δ = 7.60 (d, *J* = 7.4 Hz, 2H, Ph), 7.50 – 7.36 (m, 3H, Ph), 4.11 – 4.05 (m, 3H, OCH₂, OH), 4.01 (br d, *J* = 13.5 Hz, 1H, CHH), 3.61 (br d, *J* = 12.9 Hz, 1H, CHH), 1.28 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃), 1.18 (d, *J* = 25.0, 11.8 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CD₃OD) δ = 139.28 (d, *J* = 9.7 Hz, Ph), 130.20 (s, Ph), 129.37 (d, *J* = 3.6 Hz, Ph), 128.36 (d, *J* = 3.2 Hz, Ph), 98.29 (dd, *J* = 189.7, 152.7 Hz, CFP), 77.25 (dd, *J* = 20.4, 4.3 Hz, *C*(OH)), 63.55 (d, *J* = 6.1 Hz, OCH₂), 47.10 (s, CN) 19.52 (dd, *J* = 21.3, 3.3 Hz, CH₃), 17.20 (d, *J* = 5.6 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CD₃OD) δ = -171.21 (dq, *J* = 75.1, 25.1 Hz). ³¹P{/¹H} NMR (122 MHz, CD₃OD) δ = 16.39 (d, *J* = 75.2 Hz). IR (film): v = 3360 (br), 3164, 2982, 2930, 1524, 1496, 1451, 1391, 1370, 1212, 1198, 1061, 951 cm⁻¹ MS (ESI) *m/z* = 292.3 [M+H]⁺

rac Tert-butyl (((*1R,2R*)-2-(*diethoxyphosphoryl*)-2-*fluoro-1-hydroxycyclohexyl*)*methyl*) *carbamate* (rac **28**) Procedure C, white solid (99 mg, 86%): ¹H NMR (300 MHz, CDCl₃) δ = 5.33 (s, 1H, OH), 4.27 – 4.15 (m, 4H, OCH₂), 3.49 – 3.45 (m, 2H, CH₂N), 2.25 – 2.12 (m, 1H, CHH), 2.09 – 1.99 (m, 1H, CHH), 1.76 – 1.64 (m, 3H, CHH,CH₂), 1.61 – 1.51 (m, 3H, CH₂), 1.42 (s, 9H, C(CH₃)₃), 1.36 (t, *J* = 7.1 Hz, 6H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ = 157.30 (s, CO), 96.62 (dd, *J* = 189.7, 161.7 Hz, CFP, C2), 79.44 (s, C(CH₃)₃), 73.32 (d, *J* = 21.6 Hz, COH, C1), 66.94 – 61.01 (m, OCH₂), 47.00 (s, CN), 30.94 (d, *J* = 8.7 Hz, C6), 28.54 (s, C(CH₃)₃), 19.81 (d, *J* = 7.2 Hz, C4), 19.77 (s, C5), 16.56 (d, *J* = 5.7 Hz, OCH₂CH₃), 16.55 (d, *J* = 5.7 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) δ = -181.62 (ddd, *J* = 85.2, 41.3, 13.3 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) δ = 20.69 (d, *J* = 83.7 Hz). IR (film): v = 3350, 2977, 2935, 2868, 1712, 1517, 1393, 1366, 1246, 1170, 1026, 973 cm ⁻¹ MS (EI) *m*/*z* = 383.3 [M]⁺.

4.1. General procedure (procedure F) for oxiran 5-8 opening by HBr:

To the dissolved in chloroform (1.5 mL) acethyl bromide (44 μ L, 74 mg, 0.6 mmol) methanol (24 μ L, 19 mg, 0.6 mmol) was added at 0°C and reaction mixture was stirred for 20 min. Then, oxirane **5-8** (0.5 mmol) in chloroform (1.5 mL) was added, and stirring was continued at 0°C for 2h. Next, crude reaction mixture was extracted with CH₂Cl₂ (NaHCO_{3 aq}/brine), dried with anhydrous Na₂SO₄ and evaporated to give bromohydrine **32-35**. Flash column chromatography CHCl₃ \rightarrow 5% MeOH/CHCl₃ (v:v), (1 cm layer of silica gel) gave compounds with lower yields.

4.2. Spectroscopic properties of compounds **32-35**

rac Diethyl ((*1R,2S*)-2-*bromo-1-fluoro-3-hydroxy-2-methylpropyl)phosphonate* (rac **32a**), major isomer, isolated as a mixture with **32b**, which could not be separated by the chromatography techniques employed in this study; transparent oil (crude: 141 mg, 92%, 4:1 dr). Additional column chromatography gave **32a/32b** (88 mg, 57%, 4:1, d.r.): ¹H NMR (400 MHz, CDCl₃) δ = 4.85 (dd, *J* = 44.9, 5.9 Hz, 1H, CHF), 4.31 – 4.16 (m, 4H, OCH₂), 3.92 (s, 1H, OH), 3.60 (d, *J* = 10.4 Hz, 1H, CHH), 3.49 (dt, *J* = 10.4, 2.1 Hz, 1H, CHH), 1.50 (d, *J* = 2.0 Hz, 3H, CH₃), 1.37 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃), 1.36 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ = 89.99 (dd, *J* = 189.1, 164.4 Hz, CFP), 72.72 (dd, *J* = 18.2, 2.7 Hz, CBr), 64.39 (dd, *J* = 6.8, 1.9 Hz, OCH₂), 62.90 (d, *J* = 7.0 Hz, OCH₂), 37.94 (dd, *J* = 9.1, 6.7 Hz, COH), 22.80 (dd, *J* = 3.4, 2.3 Hz, CH₃), 16.37 (d, *J* = 6.3 Hz, OCH₂CH₃). 16.31 (d, *J* = 6.3 Hz, OCH₂CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ = -214.59 (ddq, *J* = 78.1, 45.0, 1.4 Hz). ³¹P{/¹H} NMR (162 MHz, CDCl₃) δ = 16.04 (d, *J* = 78.0 Hz). IR (film): v = 3348, 2984, 2929, 1243, 1163, 1019, 973, 544 cm ⁻¹; GC–MS *m/z* = 307.0/309.1 [M+H]⁺; *t*_R = 13.23/13.35 min;

rac Diethyl ((*1R*,2*R*)-2-bromo-1-fluoro-3-hydroxy-2-methylpropyl)phosphonate (rac 32b), minor isomer: ¹H NMR (400 MHz, CDCl₃) $\delta = 4.90$ (dd, J = 44.9, 4.5 Hz, 1H, CHF), 4.31 – 4.16 (m, 4H, OCH₂), 3.90 (s, 1H, OH), 3.56 (d, J = 1.5 Hz, 2H, CH2), 1.52 (d, J = 2.2 Hz, 3H, CH₃), 1.37 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.36 (t, J = 7.1 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) $\delta = 89.23$ (dd, J = 192.2, 162.8 Hz, CFP), 71.69 (dd, J = 19.6, 2.9 Hz, CBr), 63.63 (d, J = 5.8 Hz, OCH₂CH₃), 63.22 (d, J = 6.8 Hz, OCH₂CH₃), 39.42 (dd, J = 9.9, 3.0 Hz, COH), 21.92 (dd, J = 4.6, 2.5 Hz, CH₃), 16.31 (d, J = 6.3 Hz, OCH₂CH₃), 16.10 (d, J = 6.7 Hz, OCH₂CH₃). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -212.45$ (ddq, J = 72.6, 44.9, 1.2 Hz). ³¹P{/¹H} NMR (162 MHz, CDCl₃) $\delta = 16.29$ (d, J = 72.7 Hz).

rac Diethyl ((1*R*,2*S*)-2-bromo-1-fluoro-3-hydroxy-2-phenylpropyl)phosphonate (rac 33) slightly yellow oil (slowly decomposing on air), (159 mg, 86%): ¹H NMR (300 MHz, CDCl₃) δ = 7.47 – 7.36 (m, 5H, Ph), 5.12 (dd, *J* = 45.1, 5.8 Hz, 1H, CHF), 4.20 (q, *J* = 7.1 Hz, 2H, OCH₂), 3.93 (dd, *J* = 10.8, 1.1 Hz, 1H, CHH), 3.85 (d, *J* = 10.5 Hz, 1H, CHH), 3.76 (q, *J* = 7.5 Hz, 1H, OCHH), 3.44 (q, *J* = 7.5 Hz, 1H, OCHH), 1.33 (t, *J* = 6.8 Hz, 3H, OCH₂CH₃), 0.97 (t, *J* = 6.9 Hz, 3H, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃) δ = 138.96 (d, *J* = 2.0 Hz, Ph), 128.32, 128.20, 126.28 (3 x s, Ph), 90.19 (dd, *J* = 192.7, 164.4 Hz, CFP), 76.03 (d, *J* = 19.0 Hz, CBr), 64.45 (d, *J* = 5.1 Hz, OCH₂), 62.79 (d, *J* = 6.1 Hz, OCH₂), 39.07 (dd, *J* = 11.8, 5.3 Hz, COCH), 16.35 (dd, *J* = 4.9 Hz, OCH₂CH₃), 15.87 (dd, *J* = 5.4 Hz, OCH₂CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ = -213.44 (dd, *J* = 81.3, 45.3 Hz). ³¹P{/¹H} NMR (121 MHz, CDCl₃) δ = 15.84 (d, *J* = 81.2 Hz). MS (EI) *m*/*z* = 369.1/371.1 [M+H]⁺.

rac Diethyl ((2R,3R)-3-*bromo*-2-*fluoro*-4-hydroxy-3-*phenylbutan*-2-*yl*)*phosphonate* (rac 34) transparent oil (180 mg, 94%):¹H NMR (600 MHz, CDCl₃) δ = 7.49 (d, *J* = 7.6 Hz, 2H, Ph), 7.40 (t, *J* = 7.6 Hz, 2H, Ph), 7.35 (t, *J* = 7.3 Hz, 1H, Ph), 4.66 (d, *J* = 11.0 Hz, 1H, CHH), 4.13 – 4.30 (m, 4H, OCH₂), 4.21 (dd, *J* = 11.1, 3.1 Hz, 1H, CHH), 4.06 (s, 1H, OH), 1.39 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃), 1.34 (dd, *J* = 25.1, 13.9 Hz, 3H, CH₃), 1.33 (dd, *J* = 7.1, 0.5 Hz, 3H, OCH₂CH₃). ¹³C NMR (151 MHz, CDCl₃) δ = 139.22 (d, *J* = 9.8 Hz, Ph), 127.97 (s, Ph), 127.94 (s, Ph), 126.67 (d, *J* = 2.3 Hz, Ph), 97.84 (dd, *J* = 191.2, 163.6 Hz, CFP), 78.29 (dd, *J* = 21.5, 4.2 Hz, CBr), 63.93 (dd, *J* = 7.1, 2.1 Hz, OCH₂), 63.71 (d, *J* = 6.9 Hz, OCH₂), 40.95 (dd, *J* = 4.3, 1.3 Hz, COH), 19.99 (dd, *J* = 21.2, 3.1 Hz, CH₃), 16.45 (d, *J* = 5.7 Hz, OCH₂CH₃), 16.36 (d, *J* = 5.8 Hz, OCH₂CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -171.15 (dq, *J* = 83.8, 25.1 Hz). ³¹P{/¹H} (242 MHz, CDCl₃) δ = 19.36 (d, *J* = 83.9 Hz). MS (EI) *m*/*z* =368.1/370.1 [M-Me]⁺

rac Diethyl ((1R,2S)-2-bromo-1-fluoro-2-(hydroxymethyl)cyclohexyl)phosphonate (rac **35**) Slightly yellow oil (158 mg, 91%):¹H NMR (600 MHz, CDCl₃) δ = 4.26 – 4.18 (m, 4H, OCH₂), 4.12 (d, *J* = 11.0 Hz, 1H, CHHOH), 3.65 (dd, *J* = 11.0, 2.7 Hz, 1H, CHHOH), 3.62 (s, 1H, OH), 2.26 – 2.18 (m,

1H, CHH, C6H), 2.16 – 2.11 (m, 1H CHH, C3H), 2.09 – 2.03 (m, 1H, CHH, C6H), 1.71 – 1.65 (m, 1H, CHH, C4H), 1.61 – 1.50 (m, CH₂, 4H, C3&C4H&C5H₂), 1.38 (t, J = 7.1 Hz, 6H, OCH₂CH₃). ¹³C NMR (151 MHz, CDCl₃) $\delta = 96.6$ (dd, J = 193.5, 161.3 Hz, CFP, C1), 72.0 (dd, J = 21.5, 2.4 Hz, CBr, C2), 64.0 (d, J = 7.1, OCH₂), 63.9 (dd, J = 7.9, 1.8 Hz, OCH₂), 41.9 (s, CH₂OH), 31.5 (d, J = 8.0 Hz, CH₂, C3), 29.1 (dd, J = 20.4, 2.8 Hz, CH₂, C6), 19.7 (s, CH₂, C4), 19.6 (dd, J = 9.8, 2.7 Hz, CH₂, C5), 16.41 (d, J = 5.9 Hz, OCH₂CH₃), 16.40 (d, J = 5.9 Hz, OCH₂CH₃). ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -179.50$ (dd, J = 78.9, 43.3 Hz). ³¹P{/¹H} NMR (242 MHz, CDCl₃) $\delta = 19.31$ (d, J = 80.7 Hz). GC–MS m/z = 347.3/349.3 [M+H]⁺; R_t 15.9 min.

5.1. General procedure (procedure I) for hydrogenation and N-Boc protection of β -azido- γ -hydroxyphosphonates.

General procedure (procedure I) for hydrogenation and N-Boc protection of β -azido- γ -hydroxyphosphonates. A solution of azidohydroxyphosphonate **36-37**, **39** (0.3 mmol) in absolute EtOH (2 mL) containing Boc₂O (98 mg, 0.45 mmol) was hydrogenated over 10% Pd-C (30 mg) under atmospheric pressure for 48h. Then, the catalyst was filtrated through Celite with MeOH, the solution was concentrated on vacuum, and purified by flash column chromatography CHCl₃ \rightarrow 5% MeOH/CHCl₃ (v:v), (1 cm layer of silica gel) to give appropriate *N*-Boc protected amino hydroxyphosphonate.

5.2. Spectroscopic properties of compounds 40-42

rac Tert-butyl ((*1R,2S*)-*1*-(*diethoxyphosphoryl*)-*1-fluoro-3-hydroxy-2-methylpropan-2-yl)carbamate* (rac **40a**) Procedure I, major isomer. Isolated as a mixture with **40b**, which could not be separated by the chromatography techniques employed in this study, transparent oil (82 mg, 80%, 3:1 d.r.): ¹H NMR (400 MHz, CDCl₃) $\delta = 4.61$ (dd, J = 45.1, 5.3 Hz, 1H, CHF), 4.30 - 4.16 (m, 4H, OCH₂), 3.43 (dd, J = 15.5, 7.3 Hz, 1H, CHH) 3.36 (dd, J = 14.3, 5.0 Hz, 1H, CHH), 1.44 (s, 9H, C(CH₃)₃), 1.42 - 1.31 (m, 9H, CH₃, 2 x OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) $\delta = 157.21$ (s, CO), 91.86 (dd, J = 189.0, 162.0 Hz, CFP), 79.93 (s, C(CH₃)₃), 73.60 (d, J = 18.2 Hz, COH), 64.31 (d, J = 7.2 Hz, OCH₂), 63.12 (d, J = 7.0 Hz, OCH₂), 47.13 (CN), 28.48 (s, C(CH₃)₃), 22.04 (t, J = 4.1 Hz, CH₃), 16.52 (d, J = 5.4 Hz, OCH₂CH₃), 16.51 (d, J = 5.4 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) $\delta = -215.52$ (dd, J = 76.3, 45.2 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) $\delta = 16.60$ (d, J = 76.5 Hz). IR (film): v = 3395, 2982, 2932, 1714, 1518, 1393, 1366, 1249, 1166, 1026, 964 cm ⁻¹ MS (EI) m/z = 343.6 [M]⁺.

rac Tert-butyl ((*1R,2R*)-*1*-(*diethoxyphosphoryl*)-*1-fluoro-3-hydroxy-2-methylpropan-2-yl)carbamate* (rac **40b**), minor isomer: ¹H NMR (400 MHz, CDCl₃) $\delta = 4.70$ (dd, J = 45.4, 6.7 Hz, 1H, CHF), 4.30 – 4.16 (m, 4H, OCH₂), 3.29 – 3.23 (m, 1H, CHH), 3.18 (ddd, J = 11.2, 4.1, 2.1 Hz, 1H, CHH), 1.47 (s, 9H, C(CH₃)₃), 1.42 – 1.31 (m, 9H, CH₃, 2 xOCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) $\delta = -211.01$ (dd, J = 71.4, 45.0 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) $\delta = 17.36$ (d, J = 71.7 Hz).

rac Tert-butyl ((*1R*,2*S*)-*1*-(*diethoxyphosphoryl*)-*1-fluoro-3-hydroxy-2-phenylpropan-2yl)carbamate* (rac **41**) Procedure I. white solid (100 mg, 82%): ¹H NMR (300 MHz, CDCl₃) δ = 7.54 – 7.46 (m, 2H, Ph), 7.42 – 7.30 (m, 2H, Ph), 7.33 – 7.27 (m, 1H, Ph), 5.10 (s, 1H, OH), 4.98 (dd, *J* = 45.5, 6.2 Hz, 1H, CHF), 4.19 (quintet, *J* = 7.2 Hz, 2H, OCH₂), 3.75 ("br d", *J* = 6.4 Hz, 2H, CH₂OH), 3.73 – 3.66 (m, 1H, OCHH), 3.39 (q, *J* = 8.0 Hz, 1H, OCHH), 1.31 (td, *J* = 7.1, 0.7 Hz, 3H, OCH₂CH₃), 1.28 (s, 9H, C(CH₃)₃), 0.94 (t, J = 7.1 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) $\delta = 156.51$ (s, CO), 139.14, 128.30, 128.05, 126.52 (4 x s, Ph), 91.19 (dd, J = 192.6, 165.2 Hz, *CFP*), 79.47 (s, *C*(CH₃)₃), 77.16 (d, J = 19.3 Hz, CHCl₃, COH), 64.41 (d, J = 7.0 Hz, OCH₂), 62.59 (d, J = 6.7 Hz, OCH₂), 47.64 (dd, J = 11.3, 5.2 Hz, *CN*), 28.31 (s, C(CH₃)₃), 16.51 (d, J = 5.9 Hz, OCH₂CH₃), 16.02 (d, J = 6.0 Hz, OCH₂CH₃). ¹³C NMR (101 MHz, CD₃OD) $\delta = 158.72$ (s, *CO*), 140.82, 129.03, 128.69, 127.63 (4 x s, Ph), 93.41 (dd, J = 189.0, 168.7 Hz, *CFP*), 80.35 (s, *C*(CH₃)₃), 78.29 (d, J = 18.2 Hz, *CN*), 64.70 (d, J = 6.9 Hz, OCH₂), 64.07 (d, J = 6.8 Hz, OCH₂), 28.59 (s, C(CH₃)₃), 16.50 (d, J = 6.0 Hz, OCH₂CH₃), 16.48 (d, J = 6.0 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) $\delta = -213.80$ (dd, J = 82.0, 45.6 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) $\delta = 16.11$ (d, J = 82.1 Hz). IR (film): v = 3377, 2979, 2925, 2854, 1712, 1513, 1450, 1392, 1367, 1247, 1168, 1030, 977 cm ⁻¹ MS (EI) m/z = 405.5 [M]⁺.

rac Tert-butyl ((*1S*,*2R*)-2-(*diethoxyphosphoryl*)-2-*fluoro-1-(hydroxymethyl*)*cyclohexyl*) *carbamate* (rac **42**) Procedure I, precipitating solid from oil (92 mg, 80%):¹H NMR (300 MHz, CDCl₃) δ 4.37 – 4.15 (m, 4H, OCH₂), 3.48 (d, *J* = 5.9 Hz, 2H, CH₂N), 2.15 – 1.98 (m, 2H, CHH), 1.76 – 1.50 (m, 6H, HCH, CH₂), 1.44 (s, 9H, C(CH₃)₃), 1.38 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃), 1.37 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 156.27 (s, CO), 95.55 (dd, *J* = 189.6, 161.5 Hz, *CFP*, C2), 78.44 (s, *C*(CH₃)₃), 72.29 (br d, *J* = 21.4 Hz, COH, C1), 62.89 (dd, *J* = 7.5, 2.0 Hz, OCH₂), 62.77 (d, *J* = 6.8 Hz, OCH₂), 45.94 (s, *C*N), 29.85 (d, *J* = 8.6 Hz, C6), 27.56 (dd, *J* = 20.2, 2.5 Hz, C3), 27.51 (s, C(CH₃)₃), 20.20 – 17.32 (m, C4,5), 15.58 (dd, *J* = 5.8 Hz, OCH₂CH₃), 15.49 (d, *J* = 5.8 Hz, OCH₂CH₃). ¹⁹F NMR (283 MHz, CDCl₃) δ -181.58 (ddd, *J* = 83.6, 40.1, 12.4 Hz). ³¹P{/¹H} NMR (122 MHz, CDCl₃) δ 20.12 (d, *J* = 83.8 Hz). IR (film): v = 3353, 2978, 2936, 2869, 1713, 1680, 1517, 1449, 1392, 1366, 1245, 1169, 1025, 974 cm⁻¹ MS (EI) *m*/*z* = 383.6 [M]⁺.

2D NOESY of rac 5a,b (4.3:1, d.r.)

Diagnostic fragments of 2D NOESY of rac 5a,b (4.3:1, d.r.)

-213.0 -213.1 -213.2 -213.3 -213.4 -213.5 -213.6 -213.7 -213.8 -213.9 -214.0 -214.1 -214.2 -214.3 -214.4 f2 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

¹⁹F NMR of rac 6

Stacked plots of ¹H NMR (top), 1D NOESY (center) and 1D H-F HOESY (bottom) of rac 6

HMBC of rac 8

NOESY of rac 8

HOESY of rac 8

Diagnostic fragments of 2D NOESY of rac 9a,b (4.3:1, d.r.)

¹H NMR of rac **10a,b** (6.2:1, d.r.)

¹⁹F NMR of rac 10a,b (6.2:1, d.r.)

¹H NMR of rac **11a,b/11'a,b** (5:4/1.5:1, d.r.)

¹⁹F NMR of rac **11a,b/11'a,b** (5:4/1.5:1, d.r.)

32

¹⁹F NMR of rac 12a:12b12'a:12'b (17:14/1:1, d.r.)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14 f1 (ppm) P{/¹H} NMR of rac 12a:12b12'a:12'b (17:14/1:1, d.r.)

¹⁹F NMR of rac 17

¹⁹F NMR of rac **19a,b** (1:1, d.r.)

¹H NMR of rac 20a,b (1:1, d.r.)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 f1 (ppm) ¹⁹F NMR of rac 20a,b (1.1:1, d.r.)

42

¹⁹F NMR of rac 21

COSY of rac 21

¹³C NMR of rac 23a,b (1:1, d.r.)

¹³C NMR of rac 24a,b (1:1, d.r.)

¹³C NMR of rac 26a,b (3.8:1, d.r.)

¹³C NMR of rac 27

¹H NMR of rac 28

¹⁹F NMR of rac 28

¹H NMR of rac 30

97.81 96.28 95.29 94.47 71.08 70.85 70.95 70.85 70.75 70.85 70.75 70.85 70.75 70.85 70.75 70.85 70.85 70.85 70.85 70.85 70.75 70.85 70.75 70.75 70.75 70.75 70.75 70.75 70.75 70.75 70.75 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.85 70.75

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

 ^{19}F NMR of rac 31 (D_2O)

¹H NMR of rac 32a,b (4:1, d.r.)

¹⁹F NMR of rac 32a,b (4:1, d.r.)

2D NOESY of rac 32a,b (4:1, d.r.)

OCH₂ CHH C6H C3&6H C4H OCH₂CH₃

75

2D NOESY of rac 35

Stacked plots of ¹H NMR (top) and 1D H-F HOESY (bottom) of rac 35

¹⁹F NMR of rac 36a,b (6:1, d.r.)

¹³C NMR of rac 37

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -24 f1 (ppm)

260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 f1 (ppm)

³¹P{/¹H} NMR of rac 37

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

13.42 13.37 13.31 13.27 13.27 13.27 13.15 13.05 13.05 13.05 12.89 12.89 12.89 12.65 12.55 12.55

rac 38

2D NOESY of rac 38

Supplementary Material

¹H NMR of rac 39

¹⁹F NMR of rac 39

COSY of rac 39

2D NOESY of rac 39

90

¹⁹F NMR of rac **40a,b** (6.7:1, d.r.)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm) ¹⁹F NMR of rac **43**

