Supplemental Information

April 4, 2021

Contents

1 Additional Results 4
1.1 Balance 4
1.2 Effect of the Treatment on the Survey 5
1.3 Additional Heterogeneous Treatment Effects 6
2 Experiment Materials 22
2.1 Pamphlets 22
2.2 Qualtrics Survey 41
3 Pre-Analysis Plan (PAP) 54

List of Tables

A. 1 Balance Table by Treatment 4
A. 2 Selection into Survey. Treatment Condition Only 4
A. 3 Selection into Survey. Control Condition Only 5
A. 4 Balance Table of Survey Questions by Treatment 6
A. 5 Hetero effect reducer: first month, second month, after 2 months 7
A. 6 Hetero effect diet changed: first month, second month, after 2 months 8
A. 7 Hetero effect identify correct leaflet: first month, second month, after 2 months 9
A. 8 Hetero effect read leaflet: first month, second month, after 2 months 10
A. 9 Hetero effect leaflet affected me I am eating different: first month, second month, after 2 months 11
A. 10 Mechanism taught me: first month, second month, after 2 months 12
A. 11 Mechanism thought more: first month, second month, after 2 months 13
A. 12 Mechanism willingness: first month, second month, after 2 months 14
A. 13 Hetero effect treatment of animals is extremely important: first month, second month, after 2 months 15
A. 14 Hetero effect personal action is extremely impactful : first month, second month, after 2 months 16
A. 15 Hetero effect plant based meals are easily accessible: first month, second month,after 2 months17
A. 16 Hetero effect survey taker: first month, second month, after 2 months 18
A. 17 Hetero effect survey taker and gender: first month, second month, after 2 months 19
A. 18 Hetero effect survey taker and gender: first month, second month, after 2 months 20
A. 19 Main result: including post 21

1 Additional Results

1.1 Balance

Our treatment was assigned randomly. Therefore, in expectation, covariates should be balanced across the two conditions. We test for balance below. We find no differences in pre-intervention meat consumption across conditions.

Table A.1: Balance Table by Treatment

	Means		Difference
Variable	Pre-Intervention Contr.	Pre-Intervention Treat.	Treat. - Contr.
beef	0.162	0.160	-0.002
	(0.368)	(0.366)	(0.826)
poultryfish	0.394	0.397	0.003
	(0.489)	(0.489)	(0.805)
meat	0.556	0.557	0.001
	(0.497)	(0.497)	(0.938)
	0.280	0.268	-0.012
veg	(0.449)	(0.443)	(0.403)
Observations	42,725	43,846	86,571

The survey was not randomly assigned. There may be selection into the survey. We find that in both the treatment and control conditions, survey-takers eat less meat than those who attrit.

Table A.2: Selection into Survey. Treatment Condition Only

	Means		Difference
Variable	Survey $=1$	Survey=0	took survey - didn't take survey
beef	0.145	0.173	$-0.027^{* *}$
	(0.353)	(0.378)	(0.016)
poultryfish	0.378	0.413	-0.035^{*}
	(0.485)	(0.492)	(0.066)
meat	0.524	0.586	$-0.062^{* *}$
	(0.499)	(0.493)	(0.013)
veg	0.300	0.247	$0.053^{* * *}$
	(0.458)	(0.431)	(0.006)
Observations	48,203	53,347	101,550

Table A.3: Selection into Survey. Control Condition Only

	Means		Difference
Variable	Survey $=1$	Survey=0	took survey - didn't take survey
beef	0.157	0.169	-0.011
	(0.364)	(0.374)	(0.374)
poultryfish	0.371	0.413	$-0.042^{* *}$
	(0.483)	(0.492)	(0.020)
meat	0.528	0.582	$-0.053^{* *}$
	(0.499)	(0.493)	(0.037)
veg	0.314	0.259	$0.055^{* * *}$
	(0.464)	(0.438)	(0.005)
Observations	49,128	49,365	98,493

1.2 Effect of the Treatment on the Survey

The treatment condition may affect the survey responses. Table A.4 shows the effect of the treatment on the individual survey questions. The treatment significantly increased the probability of identifying the correct leaflet received, increased the probability of "affected me eating and thinking differently", increased the probability of being "taught about treatment of animals in farms", and increased the probability that the person "thought more about treatment of animals in farms".

Table A.4: Balance Table of Survey Questions by Treatment

	Means		Difference
Variable	Control Treatment Treat. - Contr.		

1.3 Additional Heterogeneous Treatment Effects

This section shows the results from additional analyses that test for heterogenous treatment effects.

Table A.5: Hetero effect reducer: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	$\begin{gathered} (3) \\ \text { veg } \\ \hline \end{gathered}$	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	$\begin{gathered} \hline(10) \\ \text { poultry/fish } \end{gathered}$	(11) veg	(12) meat
treated	$\begin{aligned} & \hline-0.011 \\ & (0.010) \end{aligned}$	$\begin{aligned} & \hline-0.002 \\ & (0.014) \end{aligned}$	$\begin{gathered} \hline 0.024 \\ (0.014) \end{gathered}$	$\begin{aligned} & \hline-0.011 \\ & (0.015) \end{aligned}$	$\begin{aligned} & \hline-0.011 \\ & (0.010) \end{aligned}$	$\begin{gathered} \hline 0.010 \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.003 \\ (0.014) \end{gathered}$	$\begin{aligned} & \hline-0.001 \\ & (0.016) \end{aligned}$	$\begin{aligned} & \hline-0.011 \\ & (0.008) \end{aligned}$	$\begin{gathered} \hline 0.000 \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.015) \end{gathered}$	$\begin{aligned} & \hline-0.011 \\ & (0.017) \end{aligned}$
treated \times reducer	$\begin{gathered} 0.033 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.008 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.035) \end{aligned}$	$\begin{gathered} 0.017 \\ (0.033) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.037) \end{gathered}$	$\begin{aligned} & -0.038 \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.032 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.045 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.018 \\ (0.037) \end{gathered}$	$\begin{aligned} & -0.012 \\ & (0.038) \end{aligned}$	$\begin{gathered} 0.051 \\ (0.035) \end{gathered}$
P -value reducer	0.359	0.758	0.803	0.847	0.538	0.580	0.263	0.355	0.253	0.574	0.759	0.193
Mean of untreated DV reducer $=0$. 153	. 369	. 306	. 522	. 15	. 373	. 304	. 522	. 155	. 37	. 305	. 525
Mean of untreated DV reducer $=1$. 139	. 398	. 28	. 537	. 136	. 403	. 277	. 539	. 143	. 391	. 297	. 534
PseudoR2	. 13	. 124	. 154	. 167	. 131	. 121	. 154	. 166	. 126	. 117	. 154	. 166
Clusters	336	342	342	343	335	342	342	342	339	342	342	343
N	51,830	52,174	52,203	52,237	51,233	51,540	51,581	51,595	77,377	77,633	77,579	77,661

Table A.6: Hetero effect diet changed: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	$\begin{gathered} \hline(10) \\ \text { poultry/fish } \end{gathered}$	$\begin{aligned} & \hline(11) \\ & \text { veg } \end{aligned}$	(12) meat
treated	$\begin{aligned} & \hline-0.003 \\ & (0.010) \end{aligned}$	$\begin{aligned} & \hline-0.002 \\ & (0.013) \end{aligned}$	$\begin{gathered} \hline 0.016 \\ (0.013) \end{gathered}$	$\begin{aligned} & \hline-0.003 \\ & (0.014) \end{aligned}$	$\begin{aligned} & \hline-0.005 \\ & (0.010) \end{aligned}$	$\begin{gathered} \hline 0.011 \\ (0.015) \end{gathered}$	$\begin{aligned} & \hline-0.004 \\ & (0.014) \end{aligned}$	$\begin{gathered} \hline 0.007 \\ (0.015) \end{gathered}$	$\begin{aligned} & \hline-0.010 \\ & (0.008) \end{aligned}$	$\begin{gathered} \hline 0.008 \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.007 \\ (0.015) \end{gathered}$	$\begin{aligned} & \hline-0.003 \\ & (0.017) \end{aligned}$
treated \times dietchanged	$\begin{aligned} & -0.022 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.044) \end{aligned}$	$\begin{gathered} 0.026 \\ (0.050) \end{gathered}$	$\begin{aligned} & -0.025 \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.029) \end{aligned}$	$\begin{gathered} 0.004 \\ (0.049) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.039) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.048) \end{aligned}$	$\begin{gathered} 0.031 \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.027 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.048 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.038) \end{aligned}$
P -value dietchanged	0.243	0.926	0.394	0.509	0.765	0.744	0.958	0.997	0.355	0.573	0.193	0.922
Mean of untreated DV dietchanged $=0$. 151	. 37	. 309	. 521	. 148	. 374	. 308	. 522	. 154	. 37	. 309	. 524
Mean of untreated DV dietchanged $=1$. 146	. 395	. 259	. 542	. 144	. 398	. 254	. 542	. 15	. 391	. 274	. 541
PseudoR2	. 13	. 124	. 154	. 167	. 132	. 121	. 154	. 167	. 126	. 117	. 154	. 166
Clusters	335	341	342	342	334	341	341	341	338	341	342	342
N	51,808	52,152	52,203	52,210	51,211	51,518	51,559	51,573	77,357	77,613	77,579	77,641

Table A.7: Hetero effect identify correct leaflet: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	(10) poultry/fish	$\begin{aligned} & \hline(11) \\ & \text { veg } \\ & \hline \end{aligned}$	(12) meat
treated	$\begin{aligned} & \hline-0.004 \\ & (0.014) \end{aligned}$	$\begin{gathered} \hline 0.006 \\ (0.024) \end{gathered}$	$\begin{gathered} \hline 0.015 \\ (0.027) \end{gathered}$	$\begin{gathered} \hline 0.003 \\ (0.028) \end{gathered}$	$\begin{aligned} & \hline-0.002 \\ & (0.015) \end{aligned}$	$\begin{gathered} \hline 0.011 \\ (0.023) \end{gathered}$	$\begin{aligned} & \hline-0.001 \\ & (0.020) \end{aligned}$	$\begin{gathered} \hline 0.006 \\ (0.023) \end{gathered}$	$\begin{aligned} & \hline-0.016 \\ & (0.013) \end{aligned}$	$\begin{gathered} \hline 0.013 \\ (0.025) \end{gathered}$	$\begin{gathered} \hline 0.002 \\ (0.024) \end{gathered}$	$\begin{gathered} \hline-0.003 \\ (0.026) \end{gathered}$
treated \times correctleaflet	$\begin{aligned} & -0.004 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.029) \end{aligned}$	$\begin{gathered} 0.009 \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.016 \\ & (0.033) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.020) \end{aligned}$	$\begin{gathered} 0.006 \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.027) \end{aligned}$	$\begin{gathered} 0.006 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.004 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.031) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.033) \end{gathered}$
P -value correctleaflet	0.573	0.730	0.148	0.440	0.633	0.405	0.944	0.536	0.920	0.640	0.937	0.729
Mean of untreated DV correctleaflet $=0$. 171	. 398	. 263	. 569	. 166	. 402	. 263	. 568	. 171	. 398	. 269	. 57
Mean of untreated DV correctleaflet=1	. 134	. 354	. 332	. 488	. 132	. 358	. 328	. 49	. 138	. 352	. 332	. 49
PseudoR2	. 129	. 125	. 153	. 167	. 131	. 123	. 153	. 166	. 125	. 117	. 152	. 164
Clusters	328	334	334	335	327	334	334	334	331	334	334	335
N	50,382	50,725	50,754	50,788	49,788	50,105	50,146	50,160	75,013	75,297	75,243	75,325

Table A.8: Hetero effect read leaflet: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	(10) poultry/fish	(11) veg	(12) meat
treated	0.007	0.068**	-0.050	0.075*	-0.020	-0.012	0.030	-0.039	-0.021	-0.016	-0.048	-0.040
	(0.026)	(0.034)	(0.041)	(0.042)	(0.026)	(0.048)	(0.041)	(0.052)	(0.024)	(0.040)	(0.048)	(0.037)
treated \times readleaflet	-0.015	-0.070**	0.085*	-0.090*	0.020	0.033	-0.030	0.058	0.026	0.014	0.062	0.042
	(0.027)	(0.035)	(0.051)	(0.046)	(0.035)	(0.053)	(0.042)	(0.054)	(0.030)	(0.045)	(0.056)	(0.042)
P -value readleaflet	0.510	0.885	0.056	0.331	0.993	0.271	0.986	0.269	0.655	0.915	0.447	0.937
Mean of untreated DV readleaflet $=0$. 162	. 405	. 253	. 567	. 163	. 409	. 25	. 572	. 164	. 403	. 248	. 567
Mean of untreated DV readleaflet=1	. 139	. 356	. 33	. 494	. 136	. 361	. 326	. 496	. 14	. 355	. 331	. 495
PseudoR2	. 124	. 137	. 166	. 186	. 125	. 136	. 166	. 185	. 121	. 13	. 164	. 183
Clusters	233	237	238	238	232	237	237	237	236	237	238	238
N	35,647	36,009	36,048	36,069	35,374	35,660	35,690	35,711	52,886	53,096	53,058	53,125

Table A.9: Hetero effect leaflet affected me I am eating different: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	(10) poultry/fish	(11) veg	(12) meat
treated	$\begin{aligned} & \hline-0.009 \\ & (0.014) \end{aligned}$	$\begin{gathered} \hline 0.018 \\ (0.017) \end{gathered}$	$\begin{gathered} \hline 0.012 \\ (0.017) \end{gathered}$	$\begin{gathered} \hline 0.010 \\ (0.018) \end{gathered}$	$\begin{gathered} \hline 0.007 \\ (0.014) \end{gathered}$	$\begin{gathered} \hline 0.011 \\ (0.022) \end{gathered}$	$\begin{gathered} \hline-0.006 \\ (0.018) \end{gathered}$	$\begin{gathered} \hline 0.018 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.013) \end{gathered}$	$\begin{aligned} & \hline-0.003 \\ & (0.021) \end{aligned}$	$\begin{aligned} & \hline-0.001 \\ & (0.022) \end{aligned}$	$\begin{aligned} & \hline-0.001 \\ & (0.022) \end{aligned}$
treated \times affectedme	$\begin{gathered} 0.019 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.023 \\ & (0.032) \end{aligned}$	$\begin{gathered} 0.005 \\ (0.032) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.021) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.033) \end{gathered}$	$\begin{aligned} & -0.016 \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.042 \\ & (0.033) \end{aligned}$	$\begin{gathered} 0.051 \\ (0.038) \end{gathered}$	$\begin{aligned} & -0.044 \\ & (0.035) \end{aligned}$
P -value affectedme	0.670	0.845	0.531	0.895	0.389	0.621	0.926	0.948	0.872	0.085	0.097	0.108
Mean of untreated DV affectedme $=0$. 132	. 351	. 339	. 483	. 131	. 354	. 335	. 485	. 134	. 34	. 346	. 474
Mean of untreated DV affectedme $=1$. 157	. 379	. 29	. 536	. 152	. 387	. 289	. 539	. 161	. 397	. 276	. 558
PseudoR2	. 124	. 138	. 167	. 187	. 126	. 136	. 167	. 185	. 121	. 131	. 165	. 183
Clusters	234	238	239	239	233	238	238	238	237	238	239	239
N	35,792	36,154	36,193	36,214	35,497	35,783	35,813	35,834	52,992	53,202	53,164	53,231

Table A.10: Mechanism taught me: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	$\begin{gathered} (9) \\ \text { beef } \end{gathered}$	(10) poultry/fish	$\begin{gathered} \hline(11) \\ \text { veg } \end{gathered}$	(12) meat
treated	$\begin{aligned} & \hline-0.018 \\ & (0.014) \end{aligned}$	$\begin{aligned} & \hline-0.021 \\ & (0.019) \end{aligned}$	$\begin{aligned} & \hline 0.037^{* *} \\ & (0.018) \end{aligned}$	$\begin{gathered} \hline-0.036^{* *} \\ (0.017) \end{gathered}$	$\begin{gathered} \hline 0.003 \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.004 \\ (0.020) \end{gathered}$	$\begin{gathered} \hline 0.010 \\ (0.021) \end{gathered}$	$\begin{gathered} \hline 0.010 \\ (0.021) \end{gathered}$	$\begin{gathered} \hline-0.009 \\ (0.015) \end{gathered}$	$\begin{gathered} \hline 0.007 \\ (0.019) \end{gathered}$	$\begin{gathered} \hline 0.025 \\ (0.023) \end{gathered}$	$\begin{aligned} & \hline-0.001 \\ & (0.024) \end{aligned}$
treated \times taughtme	$\begin{gathered} 0.041 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.035) \end{gathered}$	$\begin{aligned} & -0.030 \\ & (0.039) \end{aligned}$	$\begin{gathered} 0.051 \\ (0.033) \end{gathered}$	$\begin{aligned} & -0.019 \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.041) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.083^{* *} \\ & (0.042) \end{aligned}$	$\begin{gathered} -0.093^{* *} \\ (0.039) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.043) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.041) \end{aligned}$
P -value taughtme	0.376	0.891	0.845	0.602	0.525	0.814	0.815	0.471	0.053	0.017	0.609	0.441
Mean of untreated DV taughtme $=0$. 143	. 356	. 325	. 499	. 14	. 362	. 32	. 502	. 145	. 352	. 327	. 497
Mean of untreated DV taughtme $=1$. 15	. 373	. 312	. 524	. 147	. 379	. 31	. 527	. 152	. 378	. 31	. 53
PseudoR2	. 127	. 144	. 173	. 196	. 127	. 143	. 174	. 195	. 121	. 135	. 172	. 188
Clusters	205	208	209	209	204	208	208	208	207	208	209	209
N	31,634	31,855	31,902	31,922	31,601	31,778	31,821	31,841	47,140	47,345	47,321	47,386

Table A.11: Mechanism thought more: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	$\begin{gathered} \hline(8) \\ \text { meat } \\ \hline \end{gathered}$	(9) beef	(10) poultry/fish	(11) veg	$\overline{(12)}$ meat
treated	$\begin{gathered} \hline-0.006 \\ (0.016) \end{gathered}$	$\begin{aligned} & \hline-0.011 \\ & (0.019) \end{aligned}$	$\begin{aligned} & \hline 0.049^{* *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & \hline-0.015 \\ & (0.018) \end{aligned}$	$\begin{gathered} \hline 0.007 \\ (0.018) \end{gathered}$	$\begin{aligned} & \hline 0.035^{*} \\ & (0.021) \end{aligned}$	$\begin{gathered} \hline-0.008 \\ (0.021) \end{gathered}$	$\begin{aligned} & \hline 0.042^{*} \\ & (0.022) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.014) \end{gathered}$	$\begin{gathered} \hline 0.022 \\ (0.024) \end{gathered}$	$\begin{aligned} & \hline-0.012 \\ & (0.024) \end{aligned}$	$\begin{gathered} \hline 0.012 \\ (0.026) \end{gathered}$
treated \times thoughtmore	$\begin{aligned} & -0.010 \\ & (0.023) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.071^{* *} \\ (0.029) \end{gathered}$	$\begin{gathered} 0.040 \\ (0.033) \end{gathered}$	$\begin{gathered} -0.084^{* * *} \\ (0.030) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.024) \end{gathered}$	$\begin{gathered} -0.080^{* *} \\ (0.033) \end{gathered}$	$\begin{aligned} & 0.071^{*} \\ & (0.043) \end{aligned}$	$\begin{aligned} & -0.061 \\ & (0.042) \end{aligned}$
P -value thoughtmore	0.350	0.661	0.095	0.250	0.619	0.126	0.192	0.034	0.484	0.017	0.092	0.135
Mean of untreated DV thoughtmore $=0$. 156	. 374	. 303	. 53	. 153	. 378	. 299	. 531	. 156	. 365	. 306	. 522
Mean of untreated DV thoughtmore $=1$. 132	. 354	. 333	. 486	. 129	. 36	. 331	. 489	. 137	. 361	. 332	. 498
PseudoR2	. 127	. 141	. 172	. 192	. 127	. 14	. 173	. 191	. 121	. 133	. 172	. 185
Clusters	210	213	214	214	209	213	213	213	212	213	214	214
N	32,573	32,797	32,840	32,860	32,504	32,684	32,723	32,743	48,214	48,419	48,391	48,456

Table A.12: Mechanism willingness: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	$\begin{gathered} \hline(10) \\ \text { poultry/fish } \end{gathered}$	$\begin{aligned} & \hline \text { (11) } \\ & \text { veg } \end{aligned}$	(12) meat
treated	$\begin{gathered} \hline 0.044 \\ (0.039) \end{gathered}$	$\begin{aligned} & \hline-0.054 \\ & (0.078) \end{aligned}$	$\begin{gathered} \hline 0.105 \\ (0.089) \end{gathered}$	$\begin{gathered} \hline-0.053 \\ (0.120) \end{gathered}$	$\begin{aligned} & \hline 0.052^{*} \\ & (0.029) \end{aligned}$	$\begin{gathered} \hline 0.076 \\ (0.093) \end{gathered}$	$\begin{aligned} & \hline-0.041 \\ & (0.065) \end{aligned}$	$\begin{gathered} \hline 0.120 \\ (0.089) \end{gathered}$	$\begin{gathered} \hline-0.028 \\ (0.040) \end{gathered}$	$\begin{gathered} \hline 0.134^{* * *} \\ (0.052) \end{gathered}$	$\begin{aligned} & \hline-0.013 \\ & (0.033) \end{aligned}$	$\begin{aligned} & \hline 0.075^{*} \\ & (0.039) \end{aligned}$
treated \times smallchange	$\begin{aligned} & -0.041 \\ & (0.030) \end{aligned}$	$\begin{gathered} 0.070 \\ (0.086) \end{gathered}$	$\begin{aligned} & -0.091 \\ & (0.068) \end{aligned}$	$\begin{gathered} 0.066 \\ (0.116) \end{gathered}$	$\begin{gathered} -0.054^{* * *} \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.058 \\ & (0.089) \end{aligned}$	$\begin{gathered} 0.034 \\ (0.077) \end{gathered}$	$\begin{aligned} & -0.124 \\ & (0.099) \end{aligned}$	$\begin{gathered} 0.016 \\ (0.046) \end{gathered}$	$\begin{gathered} -0.130^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.042) \end{gathered}$	$\begin{gathered} -0.094^{* *} \\ (0.047) \end{gathered}$
treated \times moderatechange	$\begin{aligned} & -0.046 \\ & (0.029) \end{aligned}$	$\begin{gathered} 0.047 \\ (0.086) \end{gathered}$	$\begin{aligned} & -0.065 \\ & (0.072) \end{aligned}$	$\begin{gathered} 0.035 \\ (0.119) \end{gathered}$	$\begin{aligned} & -0.044^{*} \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.058 \\ & (0.088) \end{aligned}$	$\begin{gathered} 0.040 \\ (0.076) \end{gathered}$	$\begin{aligned} & -0.113 \\ & (0.098) \end{aligned}$	$\begin{gathered} 0.029 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.110^{* *} \\ (0.051) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.058 \\ & (0.045) \end{aligned}$
treated \times bigchange	$\begin{aligned} & -0.043 \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.123 \\ & (0.150) \end{aligned}$	$\begin{aligned} & -0.051 \\ & (0.084) \end{aligned}$	$\begin{aligned} & -0.075 \\ & (0.167) \end{aligned}$	$\begin{aligned} & -0.041 \\ & (0.059) \end{aligned}$	$\begin{gathered} -0.200^{* *} \\ (0.097) \end{gathered}$	$\begin{gathered} 0.090 \\ (0.089) \end{gathered}$	$\begin{gathered} -0.232^{* *} \\ (0.099) \end{gathered}$	$\begin{gathered} 0.088 \\ (0.071) \end{gathered}$	$\begin{gathered} -0.246^{* *} \\ (0.099) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.060) \end{gathered}$	$\begin{aligned} & -0.155 \\ & (0.113) \end{aligned}$
P -value smallchange	0.864	0.377	0.610	0.437	0.862	0.413	0.783	0.865	0.329	0.822	0.626	0.452
P -value moderatechange	0.932	0.746	0.119	0.359	0.629	0.404	0.961	0.739	0.908	0.223	0.382	0.434
P -value bigchange	0.985	0.186	0.248	0.273	0.853	0.119	0.269	0.027	0.211	0.242	0.473	0.462
Mean of untreated DV nochange	. 226	. 357	. 24	. 584	. 214	. 369	. 242	. 583	. 228	. 359	. 228	. 587
Mean of untreated DV smallchange	. 196	. 442	. 225	. 638	. 192	. 446	. 223	. 638	. 196	. 437	. 231	. 633
Mean of untreated DV moderatechange	. 128	. 36	. 327	. 488	. 125	. 362	. 326	. 487	. 131	. 363	. 328	. 494
Mean of untreated DV bigchange	. 0467	. 102	. 568	. 148	. 0462	. 112	. 554	. 158	. 047	. 116	. 553	. 163
PseudoR2	. 13	. 126	. 154	. 169	. 131	. 123	. 154	. 168	. 125	. 118	. 153	. 166
Clusters	327	333	333	334	326	333	333	333	330	333	333	334
N	50,288	50,631	50,660	50,694	49,749	50,066	50,107	50,121	75,193	75,477	75,423	75,505

Table A.13: Hetero effect treatment of animals is extremely important: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	$\begin{array}{r} (3) \\ \text { veg } \end{array}$	(4) meat	(5) beef	$\begin{gathered} (6) \\ \text { poultry/fish } \end{gathered}$	$\begin{gathered} (7) \\ \text { veg } \end{gathered}$	(8) meat	(9) beef	$\begin{gathered} (10) \\ \text { poultry/fish } \end{gathered}$	$\begin{gathered} (11) \\ \text { veg } \\ \hline \end{gathered}$	(12) meat
treated	-0.018	-0.014	0.027	-0.034*	-0.000	-0.017	0.007	-0.020	-0.009	-0.003	-0.003	-0.013
	(0.011)	(0.018)	(0.020)	(0.019)	(0.012)	(0.018)	(0.018)	(0.019)	(0.010)	(0.018)	(0.018)	(0.021)
treated \times extremelyimportant	0.034	0.030	-0.012	0.060**	-0.015	0.068**	-0.019	0.057**	0.009	0.022	-0.001	0.031
	(0.022)	(0.027)	(0.025)	(0.027)	(0.018)	(0.030)	(0.026)	(0.029)	(0.017)	(0.030)	(0.029)	(0.031)
P-value extremelyimportant	0.363	0.435	0.392	0.193	0.284	0.029	0.540	0.103	0.977	0.452	0.877	0.431
Mean of untreated DV extremelyimportant=0	. 171	. 405	. 273	. 576	. 167	. 41	. 272	. 577	. 176	. 409	. 268	. 586
Mean of untreated DV extremelyimportant=1	. 128	. 334	. 339	. 462	. 125	. 337	. 335	. 462	. 128	. 331	. 346	. 459
PseudoR2	. 129	. 125	. 154	. 168	. 131	. 123	. 154	. 168	. 125	. 117	. 153	. 166
Clusters	327	333	333	334	326	333	333	333	330	333	333	334
N	50,288	50,631	50,660	50,694	49,749	50,066	50,107	50,121	75,193	75,477	75,423	75,505

Table A.14: Hetero effect personal action is extremely impactful : first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	$\begin{gathered} (3) \\ \text { veg } \end{gathered}$	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	(10) poultry/fish	$\begin{aligned} & (11) \\ & \text { veg } \\ & \hline \end{aligned}$	(12) meat
treated	$\begin{aligned} & \hline-0.011 \\ & (0.009) \end{aligned}$	$\begin{aligned} & \hline-0.001 \\ & (0.014) \end{aligned}$	$\begin{aligned} & \hline 0.026^{*} \\ & (0.015) \end{aligned}$	$\begin{aligned} & \hline-0.010 \\ & (0.015) \end{aligned}$	$\begin{aligned} & \hline-0.003 \\ & (0.010) \end{aligned}$	$\begin{aligned} & \hline-0.005 \\ & (0.016) \end{aligned}$	$\begin{gathered} \hline 0.014 \\ (0.014) \end{gathered}$	$\begin{aligned} & \hline-0.008 \\ & (0.016) \end{aligned}$	$\begin{aligned} & \hline-0.006 \\ & (0.009) \end{aligned}$	$\begin{gathered} \hline-0.012 \\ (0.015) \end{gathered}$	$\begin{gathered} \hline 0.007 \\ (0.016) \end{gathered}$	$\begin{aligned} & \hline-0.018 \\ & (0.016) \end{aligned}$
treated \times extremelyimpactful	$\begin{gathered} 0.024 \\ (0.033) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.033) \end{aligned}$	$\begin{gathered} 0.017 \\ (0.040) \end{gathered}$	$\begin{aligned} & -0.026 \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.088^{* *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.058^{*} \\ & (0.031) \end{aligned}$	$\begin{gathered} 0.059 \\ (0.042) \end{gathered}$	$\begin{aligned} & -0.005 \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.095^{* *} \\ & (0.047) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.080^{* *} \\ & (0.040) \end{aligned}$
P-value extremelyimpactful	0.678	0.968	0.731	0.854	0.311	0.044	0.126	0.181	0.516	0.062	0.484	0.090
Mean of untreated DV extremelyimpactful=0	. 16	. 386	. 289	. 545	. 156	. 391	. 287	. 547	. 166	. 391	. 284	. 556
Mean of untreated DV extremelyimpactful=1	. 119	. 324	. 354	. 443	. 117	. 323	. 353	. 441	. 106	. 302	. 383	. 408
PseudoR2	. 129	. 125	. 154	. 168	. 131	. 123	. 154	. 167	. 125	. 118	. 153	. 167
Clusters	327	333	333	334	326	333	333	333	330	333	333	334
N	50,288	50,631	50,660	50,694	49,749	50,066	50,107	50,121	75,193	75,477	75,423	75,505

Table A.15: Hetero effect plant based meals are easily accessible: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	$\begin{gathered} (6) \\ \text { poultry/fish } \\ \hline \end{gathered}$	$\begin{array}{r} (7) \\ \text { veg } \\ \hline \end{array}$	(8) meat	(9) beef	$\begin{gathered} (10) \\ \text { poultry/fish } \end{gathered}$	$\begin{aligned} & \hline(11) \\ & \text { veg } \\ & \hline \end{aligned}$	(12) meat
treated	$\begin{aligned} & \hline-0.004 \\ & (0.011) \end{aligned}$	$\begin{gathered} \hline-0.002 \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.019 \\ (0.016) \end{gathered}$	$\begin{aligned} & \hline-0.004 \\ & (0.017) \end{aligned}$	$\begin{aligned} & \hline-0.000 \\ & (0.011) \end{aligned}$	$\begin{gathered} \hline 0.018 \\ (0.018) \end{gathered}$	$\begin{gathered} \hline-0.003 \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.018 \\ (0.018) \end{gathered}$	$\begin{aligned} & \hline-0.013 \\ & (0.009) \end{aligned}$	$\begin{gathered} \hline 0.007 \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.006 \\ (0.016) \end{gathered}$	$\begin{aligned} & \hline-0.006 \\ & (0.018) \end{aligned}$
treated \times easilyaccessible	$\begin{aligned} & -0.011 \\ & (0.019) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.023 \\ & (0.031) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.046 \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.045^{* *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.031 \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.035 \\ (0.036) \end{gathered}$
P -value easilyaccessible	0.360	0.973	0.281	0.577	0.104	0.851	0.984	0.280	0.102	0.859	0.397	0.359
Mean of untreated DV easilyaccessible $=0$. 162	. 397	. 279	. 559	. 157	. 401	. 278	. 559	. 164	. 398	. 279	. 562
Mean of untreated DV easilyaccessible=1	. 119	. 3	. 374	. 419	. 119	. 302	. 369	. 421	. 119	. 293	. 386	. 413
PseudoR2	. 129	. 125	. 154	. 168	. 131	. 123	. 154	. 167	. 125	. 117	. 153	. 166
Clusters	327	333	333	334	326	333	333	333	330	333	333	334
N	50,288	50,631	50,660	50,694	49,749	50,066	50,107	50,121	75,193	75,477	75,423	75,505

Table A.16: Hetero effect survey taker: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	$\begin{aligned} & (3) \\ & \text { veg } \end{aligned}$	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	(10) poultry/fish	$\begin{aligned} & (11) \\ & \text { veg } \end{aligned}$	(12) meat
treated	$\begin{aligned} & \hline-0.007 \\ & (0.009) \end{aligned}$	$\begin{aligned} & \hline-0.006 \\ & (0.012) \end{aligned}$	$\begin{gathered} \hline-0.001 \\ (0.011) \end{gathered}$	$\begin{aligned} & \hline-0.012 \\ & (0.012) \end{aligned}$	$\begin{gathered} \hline 0.002 \\ (0.009) \end{gathered}$	$\begin{aligned} & \hline-0.014 \\ & (0.012) \end{aligned}$	$\begin{gathered} \hline 0.012 \\ (0.013) \end{gathered}$	$\begin{aligned} & \hline-0.014 \\ & (0.013) \end{aligned}$	$\begin{gathered} \hline 0.001 \\ (0.009) \end{gathered}$	$\begin{gathered} \hline 0.002 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.013) \end{gathered}$	$\begin{gathered} \hline 0.004 \\ (0.013) \end{gathered}$
treated \times survey	$\begin{aligned} & -0.000 \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.025 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.014 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.018 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.008 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.019) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.006 \\ & (0.021) \end{aligned}$
P-value survey	0.486	0.798	0.129	0.512	0.448	0.458	0.820	0.793	0.419	0.792	0.937	0.872
Mean of untreated DV survey=0	. 171	. 413	. 255	. 584	. 168	. 418	. 253	. 586	. 173	. 412	. 25	. 585
Mean of untreated DV survey=1	. 15	. 374	. 302	. 524	. 147	. 377	. 3	. 525	. 153	. 373	. 304	. 527
PseudoR2	. 121	. 109	. 138	. 154	. 12	. 108	. 135	. 154	. 115	. 102	. 134	. 15
Clusters	675	685	685	685	671	685	685	684	677	685	685	685
N	106,331	106,847	106,970	106,892	104,071	104,629	104,757	104,677	159,585	159,856	159,947	159,869

Table A.17: Hetero effect survey taker and gender: first month, second month, after 2 months

	first month				second month				after 2 months			
	(1) beef	(2) poultry/fish	(3) veg	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	(10) poultry/fish	$\begin{aligned} & \hline(11) \\ & \text { veg } \\ & \hline \end{aligned}$	(12) meat
treated	$\begin{gathered} \hline 0.001 \\ (0.011) \end{gathered}$	$\begin{aligned} & \hline-0.021 \\ & (0.016) \end{aligned}$	$\begin{gathered} \hline 0.017 \\ (0.016) \end{gathered}$	$\begin{aligned} & \hline-0.024 \\ & (0.018) \end{aligned}$	$\begin{aligned} & \hline 0.026^{* *} \\ & (0.012) \end{aligned}$	$\begin{gathered} \hline-0.044^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.018 \\ (0.017) \end{gathered}$	$\begin{gathered} \hline-0.021 \\ (0.017) \end{gathered}$	$\begin{gathered} \hline 0.008 \\ (0.011) \end{gathered}$	$\begin{aligned} & \hline-0.015 \\ & (0.019) \end{aligned}$	$\begin{gathered} \hline 0.018 \\ (0.021) \end{gathered}$	$\begin{gathered} \hline-0.005 \\ (0.022) \end{gathered}$
treated \times survey	$\begin{aligned} & -0.013 \\ & (0.018) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.033) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.044 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.027) \end{gathered}$	$\begin{gathered} 0.018 \\ (0.029) \end{gathered}$	$\begin{gathered} -0.024 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.038 \\ & (0.034) \end{aligned}$
treated \times female	$\begin{aligned} & -0.016 \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.031 \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.031 \\ & (0.021) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.024) \end{gathered}$	$\begin{gathered} -0.051^{* * *} \\ (0.015) \end{gathered}$	$\begin{aligned} & 0.062^{* *} \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.025) \end{aligned}$	$\begin{gathered} 0.012 \\ (0.025) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.034 \\ (0.025) \end{gathered}$	$\begin{aligned} & -0.026 \\ & (0.025) \end{aligned}$	$\begin{gathered} 0.017 \\ (0.027) \end{gathered}$
treated \times survey \times female	$\begin{gathered} 0.028 \\ (0.030) \end{gathered}$	$\begin{aligned} & -0.019 \\ & (0.037) \end{aligned}$	$\begin{gathered} 0.013 \\ (0.037) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.054 \\ (0.034) \end{gathered}$	$\begin{aligned} & -0.043 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.035) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.039) \end{aligned}$	$\begin{gathered} 0.037 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.039) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.037) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.041) \end{gathered}$
P-value survey \times female	0.425	0.384	0.526	0.690	0.043	0.061	0.948	0.640	0.186	0.764	0.717	0.499
Mean of untreated DV survey $=0$. 171	. 413	. 255	. 584	. 168	. 418	. 253	. 586	. 173	. 412	. 25	. 585
Mean of untreated DV survey=1	. 15	. 374	. 302	. 524	. 147	. 377	. 3	. 525	. 153	. 373	. 304	. 527
PseudoR2	. 121	. 109	. 138	. 154	. 12	. 108	. 135	. 154	. 115	. 102	. 134	. 15
Clusters	675	685	685	685	671	685	685	684	677	685	685	685
N	106,331	106,847	106,970	106,892	104,071	104,629	104,757	104,677	159,585	159,856	159,947	159,869

Table A.18: Main result: including post

	all observations				semester of intervention				semester after intervention			
	(1) beef	(2) poultry/fish	$\begin{gathered} (3) \\ \text { veg } \end{gathered}$	(4) meat	(5) beef	(6) poultry/fish	(7) veg	(8) meat	(9) beef	(10) poultry/fish	$\begin{array}{r} (11) \\ \text { veg } \\ \hline \end{array}$	(12) meat
treated	$\begin{aligned} & \hline-0.002 \\ & (0.005) \end{aligned}$	$\begin{aligned} & \hline-0.001 \\ & (0.008) \end{aligned}$	$\begin{gathered} \hline 0.003 \\ (0.007) \end{gathered}$	$\begin{aligned} & \hline-0.003 \\ & (0.008) \end{aligned}$	$\begin{aligned} & \hline-0.006 \\ & (0.005) \end{aligned}$	$\begin{aligned} & \hline-0.004 \\ & (0.008) \end{aligned}$	$\begin{gathered} \hline 0.007 \\ (0.008) \end{gathered}$	$\begin{aligned} & \hline-0.010 \\ & (0.008) \end{aligned}$	$\begin{aligned} & \hline-0.001 \\ & (0.006) \end{aligned}$	$\begin{gathered} \hline 0.002 \\ (0.010) \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.010) \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.011) \end{gathered}$
aftertreat $=1$	$\begin{gathered} 0.002 \\ (0.006) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.008) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.008) \end{aligned}$	$\begin{gathered} 0.005 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.013) \end{gathered}$	$\begin{aligned} & -0.017 \\ & (0.012) \end{aligned}$	$\begin{gathered} 0.014 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.011) \end{aligned}$	$\begin{gathered} -0.000 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.012) \end{gathered}$
Mean of DV	. 161	. 394	. 279	. 556	. 158	. 397	. 279	. 555	. 164	. 393	. 276	. 557
PseudoR2	. 116	. 105	. 134	. 151	. 12	. 11	. 137	. 155	. 115	. 101	. 133	. 15
Clusters	681	685	686	685	676	685	686	685	677	684	685	685
N	199,716	199,756	199,963	199,835	126,780	127,209	127,394	127,292	156,727	156,962	157,087	157,008

2 Experiment Materials
2.1 Pamphlets

If You Care About Animals, Please Consider Not Eating Them

You may have already seen how animals are treated on today's farms. You even may have seen how they are killed in slaughterhouses. You probably don't like seeing those pictures and videos. Why? You're a kind and decent person. You don't want others to suffer unnecessarily.

More and more people like you are choosing to leave cows, pigs, chickens, fish, and other animal products off their plates.

Read on to see the ways that you can prevent animals from suffering by making changes to how you eat.

A 2016 Harris Poll showed that about 3.7 million

 Americans are vegan - eating no meat, fish, dairy, or eggs. Millions more are vegetarian and don't eat meat or fish.Almost every animal-based food has animal-free alternatives that are delicious, satisfying, and available in most grocery stores-from high protein meat alternatives to cheese that melts on pizza to decadent desserts.

Whether you decide to cut back on meat-or remove all animal products-you can make a difference for animals at every meal!

ADULT U.S. VEGANS

(in Hundreds of Thousands)

1994

2016

"Thinking about how we love and care for our dogs and cats made us realize we shouldn't be killing and eating farmed animals when there are now so many high protein, plant-based meats available in most grocery stores!"

"Many of the nation's most rovine animal farming practices would be illegal if perpetrated against cats and dogs."

Jonathan Lovvorn, Chief Counsel, The Humane Society of the United States

MEET SCARLETI

Like all chickens, Scarlett has a unique personality. Studies also show chickens have a sense of time and they anticipate the future.

Scarlett was raised for her eggs in a cage-free facility and was suffering terribly when she was rescued but now lives in a loving home.

Because egg farms-including free range and cage-free-have no use for male chicks, they are often tossed alive into a grinding machine (pictured above). Others are thrown into garbage bags to suffocate or starve.

Chickens raised for meat spend their lives packed in a massive warehouse. They have been bred to grow so fast that by the time they are one month old it hurts many of them to walk. Ammonia from waste is so concentrated it burns their skin and lungs.

When chickens get sick, they can be clubbed on the head with a metal rod or left to suffer to death. At the slaughterhouse, they are electrically paralyzed before having their throats cut. If they avoid the blade-as many birds do-they will drown in a tank of scalding hot water.

"So our animals can"t turn around for the 2.5 years they are in the stalls....Who asked the sow if she wanted to turn around."

Dave Warner, Director of Communications, National Pork Producers Council

Met Iuclue

Lucille (below) managed to flee from a transport truck on the way to auction. She ended up at Animal Place farmed

animal sanctuary and is now living a peaceful life. Lucille loves belly rubs and comes when called-pigs are quite smart and perform as well as dogs and chimps in intelligence tests.

Mother pigs are typically kept confined in cages so small they cannot turn around (pictured above). In these cages, they develop severe psychological problems, such as biting the bars until their teeth break, and banging their heads.

Baby pigs are often born on metal grating. At just six months old, pigs raised for meat are electrocuted or shot in the head with a metal rod. Some don't immediately die and are drowned in scalding water.

HOW DAIRY HARMS COWS

From 1940 to 2015, average milk production from a U.S. dairy cow rose from 2 to 11 tons per year. Producing so much milk leads to udder enlargement and breakdown. Cows can suffer from foot problems due to the conditions (pictured right).

In order to produce profitable amounts of milk, a cow must be impregnated on a yearly basis. While the bond between mother and baby is one of the strongest in nature, dairy calves are taken away within hours of birth-they won't be together again.

The normal lifespan of a cow is twenty years, but modern dairy cows are slaughtered at about five, when their milk production starts to decline.

MEE THE ONES YOU SPARE

Agricultural economists have found that when people eat less meat, producers raise and kill fewer animals. Here are some of the individuals you help spare each year.

> About half of the fish consumed by humans don't come from the wild. Fish farms are often crowded enclosures where stress and filthy water cause death and disease. The manure drifts into neighboring rivers and oceans creating areas that no longer sustain life.

In the ocean, large driftnets catch everything in their path, including sea turtles, sharks, whales, and dolphins whose bodies are then discarded.

Fish pulled from the water suffocate for up to ten minutes. When dragged from deep ocean waters, their eyes bulge and their stomachs turn inside out from the change in pressure.

Dozens of fish like this beautiful catfish

HEALIH BENEFITS

The Academy of Nutrition and Dietetics, the largest organization of nutrition professionals in the world, says that eating vegetarian or vegan has many benefits and is safe for people of all ages, including pregnant women.

While type 2 diabetes has become a health crisis, vegans are much less likely to develop this disease. Eating fewer animal products often results in lower cholesterol, lower blood pressure, and a reduced risk of cancer.

Many elite athletes and bodybuilders are vegan. You can order our Compassionate Athlete booklet at VeganOutreach.org.
"I can honestly say that being vegan is not only the most efficient way to be full-body strong, ii's also the moss humane."

David Carter, former NFL Player

DOING IT RIGHT

Eating high protein foods such as beans, peanuts, and vegetarian meats will fulfill your daily protein requirement and provide satisfying meals. Plant-based diets are high in iron, and eating vitamin C at meals helps you absorb it. Consider a multivitamin with B12 to cover your bases. Order our Guide to Animal-Free Eating (see back cover) or visit VeganHealth.org for nutrition tips.

Brandon Williams, Temple University
"I liff five days a week, and l've added muscle since going vegetarian. Getting enough protein is easy. Beans, lentils, nuts, plantbased meats, tofu, whole grains, and dairy-free protein shakes and bars are all great sources of protein."

"I've always been low on iron, even when I ate meat. So I make sure to eat foods with plenty of iron. Beans, dark leafy greens, and whole grains like oatmeal and wheat are filled with iron. There are also iron supplements out there if you need them."

EATING OUT

INTERNATIONAL RESTAURANTS

- TACO BELL - bean burritos, bean tacos, potatoes, guacamole
- CHIPOTLE - burrito, bowl, or tacos with sofritas and fajita veggies
- JOHNNY ROCKETS - Streamliner burger and fries
- OLIVE GARDEN - pasta with marinara, breadsticks, minestrone soup
- NOODLES \& COMPANY - Japanese pan noodles, spaghetti with marinara

While cheeseless pizza with lots of fixings is always a tasty option, many chains now carry vegan cheese and meats!

Check out Mellow Mushroom, Pie Five, PizzaRev, MOD Pizza, Pieology, Pi Pizzeria, and many more!

EASY MEAL IDEAS

GETIING GROCERIES

daı̌ya
deliciously dary free awom cheddar style shreds

MAKE A DIFFERENCE!

You can replace animal products with something better!

Research shows that people who make a more gradual transition to eliminating animal products are more likely to stick with it.

You don't have to sacrifice your favorite meals-high protein vegan meats are widely available.

Focus on the hundreds of new foods you can add to meals-include them in your routine until there's no room left for the old animal products!

Because many more chickens are killed to produce the same amount of meat as from cows and pigs, you'll prevent more animal suffering by first eliminating chickens.

Once you've decided what will work for you, just get started and stick with it!

PO Box 1916, Davis, CA 95617 • VeganOutreach.org/Contact

FREE GUIDE

Get your animal-free eating guide with recipes and health tips:
Text: "Starter" to 55678
Visit: VeganOutreach.org/Guide

MENTOR PROGRAM

Get free individual help in going veg:
VeganOutreach.org/VMP

MORE COPIES

To spread this information:
VeganOutreach.org/Order
What do you think of this booklet? Let us know: VeganOutreach.org/Contact

The
Behind the Cuteness

You Can Stop It
The dog breeder or pet store you've picked to buy your puppy from might be supporting the notorious "puppy mill" industry. Puppy mills are breeding businesses that raise dogs in shockingly poor conditions. "Breeding stock" animals are caged and continually bred for years, without human companionship and with little hope of ever becoming part of a family. After their fertility wanes, breeding animals may be killed, abandoned, or sold to another mill. The result of all this breeding? Millions of puppies, many with behavior and health problems not easily seen at the time of purchase.

Without Pet Stores, Puppy Mills Wouldn't Survive

They may seem to know what they're doing, but behind the friendly façade of pet stores often lies the ugly reality of puppy mills. There's only one sure way to combat the tragedy of puppy mills-don't support them. No matter how cute the puppy in the pet store is, please don't buy her. You may feel like you're "rescuing" her, but in reality you're only freeing up space for another puppy mill "product" while supporting and encouraging an industry based on abuse. Unless you personally visit the place your puppy was born and raised-and where the puppy's parents live-there's no way to know that your puppy didn't come from a puppy mill, no matter what a sales clerk tells you. \rightarrow

Heart Set on a Purebred Dog?

Shelters and breed rescue groups have purebred dogs available for adoption every day. Contact The Humane Society of the United States Companion Animals staff at 202-452-1100 or 2100 L Street, NW, Washington, DC 20037, or visit humanesociety.org/puppy for help finding a purebred rescue group or shelter in your area.

Online Shopping-the New Face of a Terrible Business

You think you've found the perfect breeders, with a website filled with pictures of cute puppies, claims of how much they adore their "furry babies," and warnings that they only sell to "qualified homes." Everything feels right about this place, but beware-such websites are one of the newest scams puppy mills are running, and there's no way to know by looking at a website or talking to someone over the phone whether you're dealing with a puppy mill.

Websites allow puppy millers to "cut out the middleman" by selling directly to consumers. Not only is this more profitable, but in most states it allows the puppy mill to avoid being inspected by government agencies.

Websites loaded with pictures and promises of a loving home may seem like an ideal spot to find the right puppy for you, but remember that puppy mills house dogs in deplorable conditions, and they churn out puppies for quick sale and shipment. Your purchase could be supporting cruelty.

Celebrating Animals | Confronting Cruelty
For more on puppy mills, and for help finding a breeder who isn't running a puppy mill, visit

2100 L Street, NW Washington, DC 20037 humanesociety.org

THE HUMANE SOCIETY
OF THE UNITED STATES

2.2 Qualtrics Survey

Leafletting Follow up Survey

Start of Block: Instruction

Note
Compensation: When you complete this survey, you will be entered in to a drawing for a $\$ 50$ Amazon.com Gift Card. There are 11 gift cards for Occidental College students. If you are selected, the gift card will be emailed to you.

Note: Please be as truthful as possible and answer to the best of your knowledge. Your responses will be used solely for research purposes. As such, we would like your honest answers. All responses will be kept strictly confidential.

End of Block: Instruction

Q1 Which of these describes your current diet? Pick all that apply
\square Ketogenic diet (high fat, low-carb diet) (1)Atkins Diet (eat low carbohydrate, high protein foods) (2)Paleolithic Diet (consists of fish, meats, eggs, vegetables, fruit, fungi, roots, and nuts) (3)
 Mediterranean Diet (A diet mimicking the traditional dietary patterns of southern Italy) (4)

\square
Pescatarian Diet (eat fish, egg, and milk products, but no other meat (including chicken)) (5)chicken))

Vegetarian Diet (eat egg and milk products, but no meat (including fish or (6)Vegan Diet (eat no meat (including fish or chicken), milk products, egg, or other animal products) (7)

Meat Reduction Diet (A diet reducing meat consumption, for example Meatless Mondays) (8)

No specific diet (A diet with no specific preferences or exclusions) (9)Other (10) \qquad

Q2 Has your diet changed over the last month?

Yes (1)

No (2)
Other (3) \qquad

Display This Question:
If Has your diet changed over the last month? = Yes

Q3 If your diet changed over the last month, which of the following are reasons you think contributed to the change? (check all that apply)

\square
Health reasons (my idea) (1)Health reasons (doctor's suggestion) (2)Allergies (3)Environmental reasons (4)Animal cruelty (5)Social justice (6)Religious reasons (7)Ethical reasons (8)Like the taste better (9)Cost (10)Convenience (11)Changed where I get food or who prepares food for me because of other life changes (12)Seasonal variation (13)Other (14) \qquadDon't know (15)Not applicable: I did not change my diet (16)

Page Break

Page 5 of 12

Q4 Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that apply.

A (1)B (2)C (3)D (4)E (5)None (6)Not sure (7)

[^0]Q5 If so, did you read it?Yes, all of it (1)Yes, some of it (2)I glanced at it (3)No, I did not (4)

```
Display This Question:
    If Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... = A
    Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =
B
    Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =
c
    Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =
D
    Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =
```

Q6 If a leafleter gave you leaflet(s), do you think the leaflet(s) affected you?Yes, I am eating differently. (1)Yes, I am eating the same but am thinking differently about farming practices. (2)Yes, I am thinking differently about pet cats and dogs. (3)Yes, in a different way (please elaborate) (4)Maybe a little. (5)No. (6)

```
Display This Question:
    If If so, did you read it? = Yes, all of it
    Or If so, did you read it? = Yes, some of it
    Or If so, did you read it? = I glanced at it
```

Q7 Reading the leaflet(s) taught me about (choose all the reasons that apply)The treatment of animals in farms. (1)The climate-change impact of my diet

How animals enjoy music. (2)Pet adoption and puppy mills. (4)I knew most of the information in the leaflet already. (6)

```
Display This Question:
    If If so, did you read it? = Yes, all of it
    Or If so, did you read it? = Yes, some of it
    Or If so, did you read it? = I glanced at it
```

Q8 After reading the leaflet I thought more about (choose all the reasons that apply)
\square The treatment of animals in farms. (2)The climate-change impact of my dietHow animals enjoy music. (5)Pet adoption and puppy mills. (3)I did not think more about any of the above issues. (6)

Q9 Did you read any of the other leaflets displayed? Perhaps a friend had one and showed you, or you found one and read it.

A (1)B (2)C (3)D (4)E (5)None (6)Not sure (7)

Q10 In your view how important is the issue of mistreatment of farm animals?Not at all important (1)

Moderately important (2)Extremely important (3)
I don't know (4)

Q11 In your view how impactful is personal choice of food items on how farm animals are treated?Not very impactful (1)Moderately impactful (2)Extremely impactful (3)I don't know (4)

Q12 In your view how accessible are animal product replacements (alternative plant-based products)?Not accessible (1)Moderately accessible (2)Easily accessible

I don't know (4)

Q13 How willing are you to make lifestyle changes to help reduce mistreatment of farm animals?

Not willing to make any lifestyle changes (1)Willing to make small lifestyle changes (2)Willing to make moderate lifestyle changes (3)Willing to make big lifestyle changes (4)

End of Block: Survey Questions

Start of Block: Demographic Information

Q14 Are you of Hispanic, Latino, or Spanish origin?Yes (1)No (2)

Q15 How would you identify yourself?American Indian or Alaska Native (1)Asian (2)Black or African American (3)Native Hawaiian or Other Pacific Islander (4)White (5)Other (if so, please write in) (6)

Q16 What is your gender?

Male (1)
Female (2)Other/Non-binary/Decline to state (3)

Q17 Are you first-generation in your family to attend college?Yes (1)No (2)

End of Block: Demographic Information

3 Pre-Analysis Plan (PAP)

Effectiveness of informational pamphlets

Outline of Analysis

1. Structure of data

a. Food data
i. Observation is a purchase at the dining hall.
ii. Date and Timestamp
iii. Itemized food items
iv. Meat or not (beef, poultry, veg, salad and fish)
v. Purchases on Fridays, mornings and weekends are omitted (food items are not clearly identifiable for these purchases).
b. Survey data
i. Gender
ii. Race
iii. Self-identified diet
iv. Memory recall about the intervention tools
v. Persuasivity of intervention
vi. Informativeness of intervention
vii. View towards treatment of farm animals
viii. View towards impact of personal choice
ix. Self-reported attempted diet change
x. Reasons for changing/not changing

2. Variables

a. Outcomes
i. Main Outcome: Purchase was meat or not
ii. Survey Outcomes

1. Diet changed
2. Reason for diet change
3. Remembered leaflet
4. Read the leaflet
5. Flyer affected you?
6. Importance of animal, personal choice, accessibility of replacements, willing to make changes
b. Regressors
i. Treatment
ii. Leafletting variables: day, leafletter, hour
iii. Survey variables:
7. Current diet.
8. Has diet changed?
9. Reasons for diet change
10. Leaflet: Remembered the leaflet, read the leaflet, leaflet affected you?, taught me, persuaded me, increased my motivation
11. Importance of animal, personal choice, accessibility of replacements, willing to make changes. Index of these variables.
12. Race/Ethnicity, Gender, First Generation
iv. FE: Individual, meal
13. Statistical Model
a. Descriptive summary statistics
b. Main Regression
$Y_{i m}=\theta_{i}+\lambda_{m}+\beta T_{i m}+u_{i m}$
Where: i represents the individual.
m is the meal (e.g. lunch on Oct 3).
$\theta \& \lambda$ represent individual and meal-specific FE respectively.
T is the treatment and u is the error term.
We estimate β using logit regression with individual FE using the whole year worth of purchase data.
c. Survey regression
$S Y_{i}^{j}=\theta_{i}+\lambda_{m}+\beta_{1} T_{i}+\beta_{2} L V_{i}+\beta_{3} S V_{i}+u_{i}$
Where: $S Y^{j}$ represents survey outcomes;
SY ${ }^{1}$ - Diet changed
$S Y^{2}$ - Reason for diet change
$S Y^{3}$ - Remembered leaflet
$S Y^{4}$ - Read the leaflet
$S Y^{5}$ - Flyer affected you?
SY ${ }^{6}$ - Importance of animal, personal choice, accessibility of
replacements, willing to make changes
LV_{i} represent the leaflet variables;
day $_{i}$-Day
leaf ${ }_{i}$ - Leafletter
hri-Hour
SV_{i} represents survey variables;
cdiet $_{i}$ - Current diet.
hasdc ${ }_{i}$ - Has diet changed?
reasons ${ }_{i}$ - Reasons for diet change
Leaflet $_{i}$ - Leaflet: Remembered the leaflet, read the leaflet, leaflet affected you? taught me, persuaded me, increased my motivation.
index $_{i}$ - Importance of animal, personal choice, accessibility of replacements, willing to make changes. Index of these variables.
race $_{i}$ - Race/Ethnicity
gender ${ }_{i}$ - Gender
firstgen ${ }_{i}$ - First Generation
> We estimate β^{\prime} 's using logit and multinomial logit regression depending on the type of the survey outcome variable.
d. Heterogeneous treatment effects
$Y_{i m}=\theta_{i}+\lambda_{m}+\beta_{1} T_{i m}+\beta_{2} T_{i m} X \quad+\beta_{3} T_{i m} X$ race $_{i}+\ldots+u_{i m}$
$>$ Estimate β^{\prime} s using logit regression
e. Mechanisms
$Y_{i m}=\theta_{i}+\lambda_{m}+\beta_{1} T_{i m}+\beta_{2} T_{i m}$ X $_{\text {Leaflet }}^{i}+\ldots+u_{i m}$
$Y_{i m}=\theta_{i}+\lambda_{m}+\beta_{1} T_{i m}+\beta_{2} T_{i m} X$ remember ${ }_{i}+\beta_{3} \mathrm{~T}_{\mathrm{im}} X$ read $_{i}+\beta_{4} \mathrm{~T}_{\mathrm{im}} \mathrm{X}$ affectedme ${ }_{i}$
$+\beta_{5} \mathrm{~T}_{\mathrm{im}} \mathrm{X}$ taughtme ${ }_{i}+\beta_{6} \mathrm{~T}_{\mathrm{im}} \mathrm{X}$ persuadedme ${ }_{i}+\beta_{7} \mathrm{~T}_{\mathrm{im}} \mathrm{X}$ motivatedme ${ }_{i}+\ldots+\mathrm{u}_{\mathrm{im}}$
$>$ Estimate β^{\prime} s using logit regression

[^0]: Display This Question:
 If Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... = A
 Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =
 B
 Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =
 C
 Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =
 D
 Or Did a leafleter give you any of these leaflets in the past month (this semester)? Check all that... =

