Supplementary Material ## Supplemental table 1 | Test | Patient #1 | Patient #2 | Reference | |----------------------------|--|---|-------------| | Umbilical serum TSH (mU/l) | 11 | 6.6 | < 40 | | Total Cholesterol (mmol/l) | 5.0 | 4.5 | 2.7 - 5.8 | | HDL-Cholesterol (mmol/l) | 1.71 | 1.23 | 0.93 - 1.94 | | LDL-Cholesterol (mmol/l) | 3.4 | 3.2 | 1.6 - 3.6 | | Triglycerides (mmol/l) | 0.6 | 0.8 | < 1 | | Glucose (mmol/l) | 4.4 | 5.0 | 4 - 6 | | HbA1c (mmol/mol) | 33 | 35 | 20 - 42 | | Insulin (mU/l) | 5 | 6 | 2.6 - 25 | | IGF1 (nmol/l) | 27 | 23 | 5 - 44 | | Cortisol (nmol/l) | 134 | 167 | 133 - 537 | | Bone age | 2 – 2.3 years behind | 0.7 year behind | | | Head MRI | Normal | Normal | | | Thyroid ultrasound | Normal (Isthmus 1,6 mm, left lobe 22 x 8 x 6 mm, right lobe 24 x 8 x 7 mm) | Normal (Isthmus 0,7 mm, left lobe 25 x 9 x 7mm, right lobe 30 x 9 x 7 mm) | | Clinical and biochemical variables and their reference values in two patients with CeH. Patient #1's laboratory tests were performed at the age of 9. Bone age was assessed at the age of 5.7 years. Patients #2's laboratory tests were performed at the age of 6.5 years and his bone age was determined at the age of 6.7 years. #### Supplementary Material | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | MASCSFTRDQATRRLRGAAAAAAAAAAAVVTTPLLSSGTPTALIGTGSSCPGAMWLSTAT MASCSFTRDQATRRLRGAAAAAAAAAAAVVTTPLLSSGTPTALIGTGSSCPGAMWLSTAT *********************************** | 60
60 | |------------------------------------|--|-------------| | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | GSRSDSESEEEDLPVGEEVCKRGYLRKQKHGHRRYFVLKLETADAPARLEYYENARKFRH GSRSDSESEEEDLPVGEEVCKRGYLRKQKHGHRRYFVLKLETADAPARLEYYENARKFRH ************************************ | 120
120 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | SVRAAAAAAAAASGAAIPPLIPPRRVITLYQCFSVSQRADARYRHLIALFTQDEYFAMV
SVRAAAAAAAAASGAAIPPLIPPRRVITLYQCFSVSQRADARYRHLIALFTQDEYFAMV
************************************ | 180
180 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | AENESEQESWYLLLSRLILESKRRRCGTLGAQPDGEPAALAAAAAAEPPFYKDVWQVIVK AENESEQESWYLLLSRLILESKRRRCGTLGAQPDGEPAALAAAAAAEPPFYKDVWQVIVK *********************************** | 240
240 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | PRGLGHRKELSGVFRLCLTDEEVVFVRLNTEVASVVVQLLSIRRCGHSEQYFFLEVGRST PRGLGHRKELSGVFRLCLTDEEVVFVRLNTEVASVVVQLLSIRRCGHSEQYFFLEVGRST ************************************ | 300
300 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | VIGPGELWMQVDDCVVAQNMHELFLEKMRALCADEYRARCRSYSISIGAHLLTLLSARRH
VIGPGELWMQVDDCVVAQNMHELFLEKMRALCADEYRARCRSYSISIGAHLLTLLSARRH
*********************************** | 360
360 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | LGLVPLEPGGWLRRSRFEQFCHLRAIGDGEDEMLFTRRFVTPSEPVAHSRRGRLHLPRGR
LGLVPLEPGGWLRRSRFEQFCHLRAIGDGEDEMLFTRRFVTPSEPVAHSRRGRLHLPRGR
*********************************** | 420
420 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | RSRRAVSVPASFFRRLAPSPARPRHPAEAPNNGARLSSEVSGSGSGNFGEEGNPQGKEDQ
RSRRAVSVPASFFRRLAPSPARPRHPAEAPNNGARLSSEVSGSGSGNFGEEGNPQGKEDQ
************************************ | 480
480 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | EGSGGDYMPMNNWGSGNGRGSGGGQGSNGQGSSSHSSGGNQCSGEGQGSRGGQGSNGQGS EGSGGDYMPMNNWGSGNGRGSGGGQGSNGQGSSSHSSGGNQCSGEGQGSRGGQGSNGQGS *********************************** | 540
540 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | GGNQCSRDGQGTAGGHGSGGQRPGGGHGSGGGQGPGDGHGSGGGKNSGGGKGSGSGKGS GGNQCSRDGQGTAGGHGSGGQRPGGGHGSGWWPGTWRWPWLRWWQELWGGQ ****************************** | 600
592 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | DGDGERGKSLKKRSYFGKLTQSKQQQMPPPPPPPPPPPPPAGGTGGKGKSGGRFRLYFCVDRLRKWERIRW* * :. :: : | 660
602 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | RGATKECKEAKEVKDAEIPEGAARGPHRARAFDEDEDDPYVPMRPGVATPLVSSSDYMPM | 720
602 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | APQNVSASKKRHSRSPFEDSRGYMMMFPRVSPPPAPSPPKAPDTNKEDDSKDNDSESDYM | 780
602 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | FMAPGAGAIPKNPRNPQGGSSSKSWSSYFSLPNPFRSSPLGQNDNSEYVPMLPGKFLGRG | 840
602 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | LDKEVSYNWDPKDAASKPSGEGSFSKPGDGGSPSKPSDHEPPKNKAKRPNRLSFITKGYK | 900
602 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | IKPKPQKPTHEQREADSSSDYVNMDFTKRESNTPAPSTQGLPDSWGIIAEPRQSAFSNYV | 960
602 | | WT_IRS4
MUT_IRS4(p.G572W_fs*32) | NVEFGVPFPNPANDLSDLLRAIPRANPLSLDSARWPLPPLPLSATGSNAIEEEGDYIEVI | 1020
602 | Supplemental figure 1: Aligned IRS4 wildtype (WT) and mutated (p.G572W_fs*32) sequences. The alignment was performed using Clustal O (1.2.4) multiple sequence alignment tool (12). #### Supplemental figure 2: PheWeb images of the two IRS4 variants. (A) rs1801164 showing significant association with renal failure and (B) rs1452561670, 20 kb downstream of IRS4 associated significantly with thyroid disorders and hypothyroidism over 2925 disease phenotypes in 13 endpoint categories as described in FinnGen (finngen.gitbook.io/documentation/). ## **Supplemental table 2** | Primer name | Sequence (5' > 3') | Product size (bp) | Tannealing (°C) | |-------------|----------------------|-------------------|-----------------| | A-IRS4ex1F | GAAACCAGTGTTCAGGCGAG | 551 | 60 | | A-IRS4ex1R | TGGCACGTATGGGTCATCCT | 551 | | | B-IRS4ex1F | GCTCCAGTAGCCATAGCTCG | 755 | | | B-IRS4ex1R | AGGTGCTTTTGGAGGACTCG | 755 | | IRS4 primer sequences and annealing temperature used in PCR and Sanger-sequencing. ### Data availability statement The VCF-file of the clinical exome dataset from the index case presented in this study can be found in online repository.