

Supplementary Material

1 MAIN PUBLIC-HEALTH ACTIONS SUGGESTED BY THE MODELS.

As explained in the main text, the generalized SIR model is summarized by the set of differential equations:

$$\frac{\mathrm{d}S(t)}{\mathrm{d}t} = -\frac{(S(t))^n}{\tau_0} i(t) \tag{S1}$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{\left(S(t)\right)^n}{\tau_0} i(t) - \frac{I(t)}{\tau_1} \tag{S2}$$

$$\frac{\mathrm{d}R}{\mathrm{d}t} = \frac{(I(t))}{\tau_1} \tag{S3}$$

We summarize a few known public-health actions suggested by the SIR model (Weiss, 2013) which are useful to follow the lines of reasoning developed in the paper.

- 1. Since the maximum value for $R(\infty)$ is the entire population, $N < \infty$, the disease always dies out, $I(t > t_0) = 0$. Otherwise, if for some initial conditions we could have $I(\infty) \neq 0$, Eq. S3 would imply that R(t) could grow without limit since $\frac{\mathrm{d}R}{\mathrm{d}t} > 0$, which proves the fact by *reductio ad absurdum*.
- 2. For n=1 the ratio $\Re_0=\frac{\tau_1}{\tau_0}$ determines whether the disease grows or dies. Since S(t) can only decrease, we have from Eq. S2 that

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{S(t)\ i(t)}{\tau_0} - \frac{I(t)}{\tau_1} \le \frac{1}{\tau_1} \left(\frac{\tau_1}{\tau_0} s(0) - 1\right) I(t) = \frac{1}{\tau_1} \left(\Re_0 - 1\right) I(t) = \frac{I(t)}{\tau}$$
 (S4)

at the onset, for $\Re_0 >> 1$, an initial estimation for τ_0 can be obtained from $\tau \approx \tau_0$. ¹ Moreover, if $\Re_0 < 1$, I(t) is a monotonically decreasing function and the infection dies quickly. On the other hand, if $\Re_0 > 1$, I(t) increases in the region near t=0, it reaches a maximum value, $I_M(t_M)$, and then it goes to zero, as proved in the point above. \Re_0 is called the **basic reproductive number** and it sets up a non-obvious threshold for the expansion of the disease.

3. For n = 1, the maximum number of infected people can be obtained by dividing the two equations S1 and S2,

$$\frac{\mathrm{d}S}{\mathrm{d}I} = -\frac{s(t) I(t)}{\frac{s(t) I(t)}{\tau_0} - \frac{I(t)}{\tau_1}} \tag{S5}$$

which can be integrated to yield for $s(0) \approx 1$ and $i(0) \approx \frac{1}{N}$,

$$i_M = 1 - \frac{1}{\Re_0} \left(1 + \ln \Re_0 \right)$$
 (S6)

 $s(0) \approx 1$ for large N

4. Similarly, dividing the equation S1 by S3 (n = 1), we get

$$\frac{\mathrm{d}S}{\mathrm{d}R} = -\Re_0 S \tag{S7}$$

i.e., $S(t) = S(0)e^{-\Re_0 R(t)}$, assuming R(0) = 0. Notice that for $\Re_0 >> 1$, $S(\infty)$ might get to the value zero, which corresponds to a very virulent epidemics where everybody dies.

The above considerations yield to the following public-health actions while dealing with an infectious disease (Figs. S1 and S2):

- 1. Reduce the contact rate or transmissibility, $\frac{1}{\tau_0}$, by isolating infectious nodes, encouraging frequent hand washing and the use of face masks. Increasing values of τ_0 displace t_M towards larger times and decrease the value of I_M .
- 2. Decrease τ_1 to reduce the duration of infection. Increasing values of τ_1 displace t_M towards the origin and increase the value of I_M .
- 3. Reduce N = S(0) by vaccination or any other kind of immunity. Increasing S(0) displaces t_M towards larger values, decreases i_M and r_M .
- 4. Decrease n. Decreasing n < 1 moves t_M towards larger values and, it decreases i_M and r_M .

REFERENCES

Weiss, H. (2013). The SIR model and the foundations of public health. *MatMat* 3, 1–17

2 SUPPLEMENTARY TABLES AND FIGURES

2.1 Figures

Figure S1. Representative behaviour of the SIR model (n=1) depending on the parameters ($\Re_0 \geq 1.5$). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t). Initial conditions N=10000000=S(0)+1, I(0)=1. Left to right: (I) $\tau_1=2$, $\tau_0=3$, $t_M=90$, $r(\infty)=0.58$; (II) $\tau_1=2$, $\tau_0=10$, $t_M=44$, $r(\infty)=0.99$; (III) $\tau_1=5$, $\tau_0=10$, $t_M=159$, $r(\infty)=0.80$.

Frontiers 3