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1 MAIN PUBLIC-HEALTH ACTIONS SUGGESTED BY THE MODELS.

As explained in the main text, the generalized SIR model is summarized by the set of differential equations:

dS(t)

dt
= −(S(t))n

τ0
i(t) (S1)

dI

dt
=

(S(t))n

τ0
i(t)− I(t)

τ1
(S2)

dR

dt
=

(I(t))

τ1
(S3)

We summarize a few known public-health actions suggested by the SIR model (Weiss, 2013) which are
useful to follow the lines of reasoning developped in the paper.

1. Since the maximum value for R(∞) is the entire population, N < ∞, the disease always dies out,
I(t > t0) = 0. Otherwise, if for some initial conditions we could have I(∞) 6= 0, Eq. S3 would imply
that R(t) could grow without limit since dR

dt > 0, which proves the fact by reductio ad absurdum.
2. For n = 1 the ratio <0 = τ1

τ0
determines whether the disease grows or dies. Since S(t) can only

decrease, we have from Eq. S2 that

dI

dt
=
S(t) i(t)

τ0
− I(t)

τ1
≤ 1

τ1

(
τ1
τ0
s(0)− 1

)
I(t) =

1

τ1
(<0 − 1) I(t) =

I(t)

τ
(S4)

at the onset, for <0 >> 1, an initial estimation for τ0 can be obtained from τ ≈ τ0. 1 Moreover, if
<0 < 1, I(t) is a monotonically decreasing function and the infection dies quickly. On the other hand,
if <0 > 1, I(t) increases in the region near t = 0, it reaches a maximum value, IM (tM ), and then it
goes to zero, as proved in the point above. <0 is called the basic reproductive number and it sets up
a non-obvious threshold for the expansion of the disease.

3. For n = 1, the maximum number of infected people can be obtained by dividing the two equations S1
and S2,

dS

dI
= − s(t) I(t)

s(t) I(t)
τ0

− I(t)
τ1

(S5)

which can be integrated to yield for s(0) ≈ 1 and i(0) ≈ 1
N ,

iM = 1− 1

<0
(1 + ln<0) (S6)

1 s(0) ≈ 1 for large N.
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4. Similarly, dividing the equation S1 by S3 (n = 1), we get

dS

dR
= −<0S (S7)

i.e., S(t) = S(0)e−<0R(t), assuming R(0) = 0. Notice that for <0 >> 1, S(∞) might get to the value
zero, which corresponds to a very virulent epidemics where everybody dies.

The above considerations yield to the following public-health actions while dealing with an infectious
disease (Figs. S1 and S2):

1. Reduce the contact rate or transmissibility, 1
τ0

, by isolating infectious nodes, encouraging frequent
hand washing and the use of face masks. Increasing values of τ0 displace tM towards larger times
and decrease the value of IM .

2. Decrease τ1 to reduce the duration of infection. Increasing values of τ1 displace tM towards the
origin and increase the value of IM .

3. Reduce N = S(0) by vaccination or any other kind of immunity. Increasing S(0) displaces tM
towards larger values, decreases iM and rM ..

4. Decrease n. Decreasing n < 1 moves tM towards larger values and, it decreases iM and rM .
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Fig 13. Representative behaviour of the SIR model (n = 1) depending on
the parameters (<0 � 1.5). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t).
Initial conditions N = 10000000 = S(0) + 1, I(0) = 1. Left to right: (I) ⌧1 = 2, ⌧0 = 3,
tM = 90, r(1) = 0.58 ; (II) ⌧1 = 2, ⌧0 = 10, tM = 44, r(1) = 0.99; (III) ⌧1 = 5,
⌧0 = 10, tM = 159, r(1) = 0.80.
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Fig 14. Representative behaviour of the SIR model (n 6= 1) depending on
the parameters (<0  1.5). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t).
Initial conditions: N = 10000000 = S(0) + 1, I(0) = 1. Parameters: ⌧1 = 2.5, ⌧0 = 2;
<0 = 1.25, r(1) = 0.37. Left to right: (I) n = 1, tM = 137; (II) n = 1.1, tM = 375; (III)
n = 0.818, tM = 31.
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Figure S1. Representative behaviour of the SIR model (n = 1) depending on the parameters (<0 ≥
1.5). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t). Initial conditions N = 10000000 = S(0) + 1,
I(0) = 1. Left to right: (I) τ1 = 2, τ0 = 3, tM = 90, r(∞) = 0.58 ; (II) τ1 = 2, τ0 = 10, tM = 44,
r(∞) = 0.99; (III) τ1 = 5, τ0 = 10, tM = 159, r(∞) = 0.80.
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Fig 13. Representative behaviour of the SIR model (n = 1) depending on
the parameters (<0 � 1.5). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t).
Initial conditions N = 10000000 = S(0) + 1, I(0) = 1. Left to right: (I) ⌧1 = 2, ⌧0 = 3,
tM = 90, r(1) = 0.58 ; (II) ⌧1 = 2, ⌧0 = 10, tM = 44, r(1) = 0.99; (III) ⌧1 = 5,
⌧0 = 10, tM = 159, r(1) = 0.80.
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Fig 14. Representative behaviour of the SIR model (n 6= 1) depending on
the parameters (<0  1.5). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t).
Initial conditions: N = 10000000 = S(0) + 1, I(0) = 1. Parameters: ⌧1 = 2.5, ⌧0 = 2;
<0 = 1.25, r(1) = 0.37. Left to right: (I) n = 1, tM = 137; (II) n = 1.1, tM = 375; (III)
n = 0.818, tM = 31.
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Fig 14. Representative behaviour of the SIR model (n 6= 1) depending on
the parameters (<0  1.5). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t).
Initial conditions: N = 10000000 = S(0) + 1, I(0) = 1. Parameters: ⌧1 = 2.5, ⌧0 = 2;
<0 = 1.25, r(1) = 0.37. Left to right: (I) n = 1, tM = 137; (II) n = 1.1, tM = 375; (III)
n = 0.818, tM = 31.
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Figure S2. Representative behaviour of the SIR model (n 6= 1) depending on the parameters (<0 ≤
1.5). Blue dotted: S(t). Red dotted: I(t). Blue dashed: R(t). Initial conditions: N = 10000000 = S(0)+1,
I(0) = 1. Parameters: τ1 = 2.5, τ0 = 2; <0 = 1.25, r(∞) = 0.37. Left to right: (I) n = 1, tM = 137; (II)
n = 1.1, tM = 375; (III) n = 0.818, tM = 31.
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