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SUPPLEMENTARY MATERIAL 
 
Suppl. S1. Peak frequency, full-width-at-half-maximum (FWHM), frequency range, mean energy 
density, and period of the first nine intrinsic mode functions (IMFs) for the default mode network 
(DMN).  
 
IMF # 9 8 7 6 5 4 3 2 1 

Maximum 
Peak (Hz) 

0.0031 
 

0.0051 
 

0.0105 
 

0.016 
 

0.031 
 

0.053 
 

0.091 
 

0.21 
 

0.63 
 

FWHM (Hz) 0.0012-
0.0036 
 

0.0042-
0.0074 
 

0.0066-
0.0127 
 

0.010-
0.022 
 

0.016-
0.044 
 

0.032-
0.079 
 

0.055-
0.148 
 

0.10-
0.31 
 

0.20-
0.65 
 

Range (Hz) 
using 10% 

max 

0.0010- 
0.0054 
 

0.0024- 
0.0103 
 

0.0035- 
0.0156 
 

0.006- 
0.032 
 

0.009- 
0.060 
 

0.017- 
0.011 
 

0.029- 
0.208 
 

0.05- 
0.42 
 

0.06- 
0.65 
 

Mean 
log(energy 

density) 

-5.80 
±0.50 
 

-4.73 
±0.62 
 

-2.37 
±0.43 
 

-1.18 
±0.29 
 

-1.07 
±0.25 
 

-1.27 
±0.23 
 

-1.89 
±0.24 
 

-3.09 
±0.36 
 

-3.31 
±0.56 
 

Mean 
log(period/s) 

5.72 
±0.20 
 

5.23 
±0.13 
 

4.65 
±0.09 
 

4.15 
±0.09 
 

3.58 
±0.09 
 

2.97 
±0.10 
 

2.37 
±0.08 
 

1.70 
±0.07 
 

1.21 
±0.10 
 

Spatial 
similarity to 
group ICA 
map (Dice 
coefficient)  

0.10 0.33 0.62 0.60 0.75 0.76 0.80 0.68 0.32 
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Suppl. S2. Cross-validation error (CVE) as a function of the number of centroids (k) for EMD.  
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Suppl. S3. Arranged ICA components (using EMD) and brain regions involved.  
 
ICA 
# 

Label Network Name Brain Regions according to AAL Atlas 

1 VIS2 Visual 
Association 
Cortex 

Calcarine, Occipital_Inf, Occipital_mid 

2 lFPN left Fronto-
Parietal 

Temporal_Inf, Temporal_Mid, Fontal_Inf_Orb 

3 rFPN right Fronto-
Parietal 

Frontal_Mid, Parietal_Inf 

4 Artifact (head motion) 
 

5 AUD Auditory Heschl, Postcentral, Temporal_Sup 

6 DMN Default Mode Cingulum_Post, Precuneus, Angular, Frontal_Mid_Orb 

7 VIS Primary Visual 
Cortex 

Calcarine, Cuneus 

8 LAN Language Temporal_Mid, Frontal_Inf_Orb 

9 MOT Motor SupraMarginal, Postcentral 

10 Artifact 
  

11 ECN Executive Control Frontal_Sup, Frontal_Sup_Medial 

12 SM Sensory_Motor Supp_Motor_Area, Precentral, Paracentral_Lobule 

13 IPF Inferior Prefrontal Frontal_Inf_Orb, Frontal_Mid_Orb, Frontal_Inf_Tri 

14 
  

Lingual, Fusiform 

15 
  

Cerebellum_8, Cerebellum_Crus2 

16 Artifact 
  

17 PAR Parietal Precuneus, Caudate, Thalamus, Pallidum, Cerebellum_8, 
Parahippocampal  

18 rITL right Inferior 
Temporal 

Temporal_Inf 

19 lITL left Inferior 
Temporal 

Temporal_Inf 

20 
  

Caudate, Putamen 

21 Artifact 
  

22 
  

Supp_Motor_Area, Cingulum_Mid 

23 
  

Caudate 

24 
  

Thalamus, Putamen, Parahippocampus, Cerebellum_6 

25 CBN1 Cerebellar 1 Cerebellum_9, Vermis_4_5_6 

26 CCN Cognitive Control Hippocampus, Amygdala_R, Parahippocampus, Lingual, 
Temporal_Pole_Sup_L, Fusiform, Cerebellum_Crus1_L 

27 
  

Cingulum_Mid, Cingulum_Post, Thalamus, Cerebellum_9 

28 PFC Inf Prefrontal 
Cortex 

Cingulum_Ant, Caudate, Frontal_Mid_Orb, Olfactory 

29 CBN2 Cerebellar 2 Cerebellum_4_5_9, Vermis_10 

30 
  

Thalamus, Cerebellum_6, Cerebellum_Crus1 

Note: Blank entries are unknown networks that have not been reported or investigated in the 
literature.  
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Suppl. S4. Other Applications of EMD for Resting-State fMRI 

S4.1 Detrending 

IMFs are also useful for local de-trending of time series. For example, the IMF s for k > 9 have 
frequencies less than 0.01 Hz (using our acquisition protocol). The local trend 𝛿 𝑡  of data 𝑦 𝑡  
can be computed by 𝛿 𝑡 𝑦 𝑡 ∑ IMF  and is certainly more accurate than a trend 
estimated by Fourier or other stationary filtering methods, as was recently shown (Kaleem and 
Cordes, 2016). However, using EMD to estimate IMFs with frequencies less than 0.01Hz is more 
involved because different voxel time series may have frequency components less than 0.01Hz 
decomposed into IMFs with different indices.  This makes detrending with EMD more complicated 
than a simple high-pass filtering using regression with cosine basis functions (as we have done 
in this study). Alternatively, the continuous wavelet transform could also be used for high-pass 
filtering with cut-off frequency of 0.01Hz. We refrained from studying these very low drift 
frequencies with EMD or the continuous wavelet transform in this project and defer to such a 
study in a future application.  

S4.2 Global Signal Regression 

Conventionally, global signal regression uses the average of whole-brain time series as a 
nuisance regressor in a linear model to remove the effect of the global signal. However, this 
regression method does not allow for spatial variations of the global signal and treats every voxel 
the same, i.e. every voxel has the same regressor. Moradi et al. (2019) recently applied a spatially-
adaptive EMD approach called Fast and Adaptive Tridimensional (3D) EMD (FATEMD) (Riffi et 
al., 2015) for removing the global signal by decomposing the fMRI data first into 5 spatial IMFs 
(SIMFs) and associating the spatial components SIMFs with indices 3-5 as spatially adaptive 
global signal masks. Then, by summing up the maps SIMF1 and SIMF2, the global signal can be 
excluded from the data.  

S4.3 Single-Scale Time-Dependent (SSTD) Window-Sizes in Sliding-Window Dynamic 
Functional Connectivity (dFC) Analysis 

In sliding-window dFC analysis, a fixed window-size is usually used and heuristically selected 
since no consensus exists yet on the choice of the optimal window-size. Recently, Zhuang et al. 
(2020) proposed the SSTD window-sizes computed from all EMD IMFs as optimal window-sizes 
in the sliding-window dFC analysis and applied this method to a large group of professional 
fighters with and without cognitive impairment, and healthy controls. Specifically, at every time 
point, an SSTD window-size is computed as the average of the instantaneous period over all IMFs 
weighted by the corresponding energy. In this case, SSTD window-sizes are based on the 
frequency content at every time point and are able to capture more temporal dynamic information. 
Both a higher classification accuracy in predicting cognitive impairment status in fighters and a 
larger explained behavioral variance in normal controls were found when using dynamic FC 
matrices computed with SSTD window-sizes as features, as compared to using dynamic FC 
matrices computed with conventional fixed window-sizes. 

S4.4 Analytic Extension of the EMD Method  

Variational Mode Decomposition (VMD) is an analytic extension of EMD (Dragomiretskiy and 
Zosso, 2014). VMD can be thought of as a more formal EMD-type decomposition technique, but 
as with all such techniques that utilize such variations of mathematical formulation of EMD-type 
behavior, certain parameters always must be adjusted which in our view defeats the purpose of 
a completely model-free and data-adaptive decomposition method. Resting-state fMRI 
applications have been investigated with VMD by Yuen et al. (2019) for TR=2s data and for 
TR=323ms data after low-pass filtering with cutoff 0.25Hz so that IMFs can be compared for 
different TRs. Reproducibility of IMFs and corresponding frequency clusters were found across 
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fMRI trials. Similar to Song et al. (2014) and our studies, Yuen et al. (2019) found cortical resting-
state networks to be best represented by low frequency oscillations. VMD has also been used to 
avoid potential mode mixings (Yuen et al., 2019). A comparison of VMD with EMD is beyond the 
scope of the current study. 

Suppl.S5. Mode Mixing in EMD and Applying EMD to ICA time series 

Mode mixing in EMD refers to an intermittent signal, for example high frequency oscillations that 
occur in a limited time segment of otherwise low-frequency oscillations throughout the IMF. An 
IMF that shows mode mixing gives rise to significant non-orthogonality to the other IMFs. Mode 
mixings have been reported in task-activated data (Lin et al., 2016), but in resting-state fMRI data, 
mode mixing may not be easily observable, since no a priori knowledge of the correct signal is 
known. In our analysis, we have not observed mode mixing in our ICA time series. Without ICA, 
however, EMD can be more difficult to apply directly because of possible mode mixings that may 
occur for those voxel time series in which more than one network is active (Fosso (2019), Lin et 
al. (2016) ). For example, if a voxel time series contains signals belonging to two different 
networks that operate at different frequencies in a dynamic fashion, a decomposition by EMD at 
a specific time point 𝑡  could result in an IMF order that is different for different time points (for 
example IMF  (𝑡  becomes IMF  (𝑡 ).  

Without ICA, applying EMD (or related methods) directly on resting-state fMRI data can be 
difficult for the purpose of extracting meaningful intrinsic components and it has been speculated 
that the energy-period distributions would be close to white noise distributions (Lin et al., 2016). 
In this scenario, Ensemble EMD (EEMD) and related methods (complementary EEMD) can lead 
to improvements in computing IMFs by avoiding mode mixings (Qian et al., 2015, 2018). Using 
EEMD, noise is injected (added) into the data and multiple EMD runs are carried out for different 
injected noise realizations. The IMFs obtained from each run are ensemble averaged to eliminate 
the effect of noise. It has been shown that for a large number of noise realizations (≅60 or more), 
robust IMFs can be obtained that are more orthogonal to each other. Non-orthogonal contributions 
are evidence of under-sampled processes, thus, if non-orthogonal IMFs are found, the data 
segment may be too small and EEMD may provide a better estimation of IMFs. EEMD is 
computationally more expensive than EMD, however and furthermore, the amount of noise that 
should be injected for fMRI data is unknown and may have to be estimated by applying different 
models to the data. As a consequence, EEMD cannot be categorized as a model-free method 
(for detailed information on EEMD, see Huang and Shen (2014)). For completeness, we would 
like to mention that EEMD has been further improved by Complementary EEMD (CEEMD) (Yeh 
et al., 2010), then by CEEMD with Adaptive Noise (CEEMDAN) (Torres et al., 2011) and later on 
by Improved Complementary EEMD with Adaptive Noise (ICEEMDAN) (Colominas et al., 2014; 
Moradi et al., 2019). A comparison of these advanced EMD methods with our method is beyond 
the scope of the current study.  

 
 
 
 



6 
 

Suppl.S6. Application to Parkinson’s Disease 



7 
 

Different temporal characteristics of Fourier (STFT) components, wavelet (MODWT) components, 
and EMD components (IMFs) as measured by the log 𝑒𝑛𝑒𝑟𝑔𝑦  vs. log 𝑝𝑒𝑟𝑖𝑜𝑑  relationship for 
six resting-state networks. The given numbers indicate the mean difference (over subjects) in 
log 𝑝𝑒𝑟𝑖𝑜𝑑  between PD and NC. Only values in magnitude of at least 0.1 are shown (which was 
only possible in EMD analysis (20 instances) and MODWT (2 instances) but not in STFT (0 
instances)). A “*” indicates a significant difference between PD and NC with p<0.05 (uncorrected). 
The horizontal and vertical bars indicate the standard deviation in log 𝑝𝑒𝑟𝑖𝑜𝑑  and log 𝑒𝑛𝑒𝑟𝑔𝑦 , 
respectively. Note that for most IMFs of the PAR, CCN, PFC, lFPN and rFPN, the mean period is 
larger for PD (circles) versus NC (squares), indicating that the decomposition of these networks 
by EMD leads to IMFs containing lower frequencies in PD than NC. Furthermore, most low 
frequency IMFs (i.e. IMFs with index >1) have lower energy for PD than NC.  
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