Investigating the impact of cerium oxide nanoparticles upon the ecologically significant marine cyanobacterium *Prochlorococcus*

Craig J. Dedman,^{1, 2*} Marwa M.I. Rizk,³ Joseph A. Christie-Oleza,^{1, 4, 5*} Gemma-Louise Davies^{3*}

¹ School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, United Kingdom.

² Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7EQ, United Kingdom.

³ UCL Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom.

⁴ Department of Biology, University of the Balearic Islands, Ctra. Valldemossa, km 7.5. CP: 07122, Palma, Spain.

* Correspondence:

Corresponding Authors; c.dedman@warwick.ac.uk; gemma-louise.davies@ucl.ac.uk; joseph.christie@uib.eu

Keywords: *Prochlorococcus*, Ecotoxicology, Nanomaterials, Cerium oxide, Marine pollution, Phytoplankton

Supplementary Information

SI.1 Pro99 Media

To culture *Prochlorococcus sp.* MED4, cyanobacteria were grown in Pro99 media.¹ Briefly, media was prepared as follows; to 500 mL autoclaved and filtered natural oligotrophic seawater, 0.8 mL NH₄Cl (0.5 M), 1 mL NaH₂PO₄•H₂O (0.025 M) and 50 μ L trace metal stock was added and mixed by inversion three times. Each component was filter sterilized using a 0.02 μ m filter prior to addition to seawater. Ionic strength of the NSW used during experiments are within the range of natural seawater in relevant regions (~40-60 mS).²

SI.2. Characterisation of nCeO₂: Additional Information

SI.2.1 TEM primary particle size distribution

As described in section 2.2 (main text), $nCeO_2$ were imaged using transmission electron microscopy (TEM). To determine primary particle size, the diameter of 100 nanoparticles was measured using Image J v.3.2 software. The size distribution of primary $nCeO_2$ particles is presented in Fig SI.1.

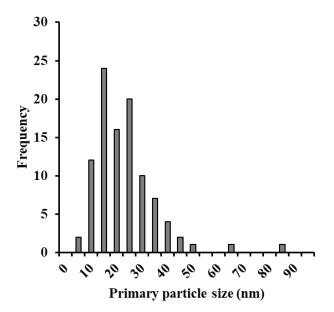


Figure SI.1. Size distribution histogram (diameter) of primary $nCeO_2$ particles measured using Image J v.3.2 software (n=100).

SI.2.2 UV-vis spectrophotometry

UV-visible spectra (Fig SI.2) were collected using an Agilent Cary 60 UV-vis spectrophotometer of a sample of 100 mg L^{-1} nCeO₂ in MilliQ ultrapure water.

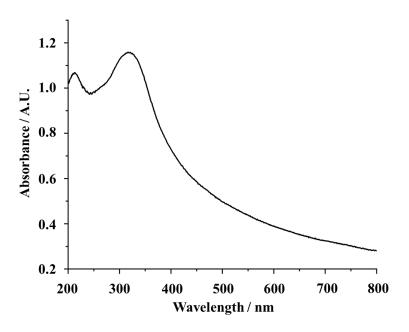


Figure SI.2. UV-vis spectra of nCeO₂ utilised in experimental work.

SI.2.3 DLS Additional results

a) Count rate data

Dynamic light scattering (DLS) was carried out on $nCeO_2$ (1 and 100 mg L⁻¹) added to NSW as described in section 2.2 (main text). The mean count data obtained at each timepoint during the 240-h experiment is presented in Table SI.1.

	Mean Count Rate (kcps)		
Time (h)	1 mg L ⁻¹	100 mg L ⁻¹	
0	311 ± 35	225 ± 90	
1	255 ± 51	207 ± 150	
2	208 ± 108	226 ± 85	
4	256 ± 65	117 ± 12	
24	229 ± 26	214 ± 136	
48	189 ± 112	172 ± 55	
72	299 ± 114	246 ± 176	
168	178 ± 118	223 ± 70	
240	249 ± 100	108 ± 54	

Table SI.1. Mean count rate recorded during DLS analysis of nCeO₂ in NSW

b) Sedimentation images

During DLS analysis, $nCeO_2$ was observed to precipitate out of the water column at both test concentrations. Deposited material was visible by eye (Fig SI.3) after 24 h and continued to be evident throughout the 240-h experiment.

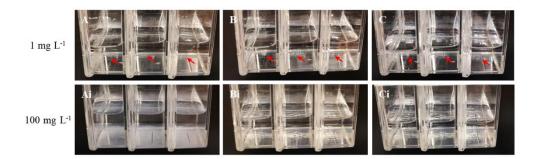


Figure SI.3. Photographic observation of $nCeO_2(1 \text{ and } 100 \text{ mg } \text{L}^{-1})$ sedimentation during DLS analysis; A – 24 h, B – 168 h, C – 240 h. Red arrows indicate where deposited material is not immediately obvious in 1 mg L⁻¹ samples.

SI.3 Toxicity testing: Initial cell density

Short- (72 h) and extended (240 h) exposures were utilized to examine the effect of $nCeO_2$ exposure upon the marine cyanobacterium *Prochlorococcus sp.* MED4 (sections 2.3 and 2.4, main text). A summary of experimental conditions used in this work is provided in Table SI.2.

Experiment	Exposure length (h)	Media	nCeO ₂ concentration	Initial cell density (cells mL ⁻¹)
Short-term (section 2.3)	72	NSW	0, 1, 10 and 100 μ g L ⁻¹	2.8 x 10 ⁴
Short-term (section 2.3)	72	Pro99	0, 1, 10 and 100 μ g L ⁻¹	8.9 x 10 ⁵
Extended exposure (section 2.4)	240	NSW	0, 1, 10 and 100 μg L ⁻¹ ; 1, 10 and 100 mg L ⁻¹	1.7 x 10 ⁵
Extended exposure (section 2.4)	240	Pro99	0, 1, 10 and 100 μg L ⁻¹ ; 1, 10 and 100 mg L ⁻¹	6.6 x 10 ⁵

Table SI.2. Experimental conditions summary for toxicity testing with Prochlorococcus sp. MED4

SI.4 Fluorescent microscopy: additional images

Fluorescent microscopy was utilized to examine the occurrence of hetero-aggregation between $nCeO_2$ and cyanobacteria (section 2.5, main text). The entrapment of cyanobacteria within large aggregates of $nCeO_2$ could be seen in both NSW and Pro99 media. Additional images to supplement those presented in Fig 5 (main text) are presented in Fig SI.4.

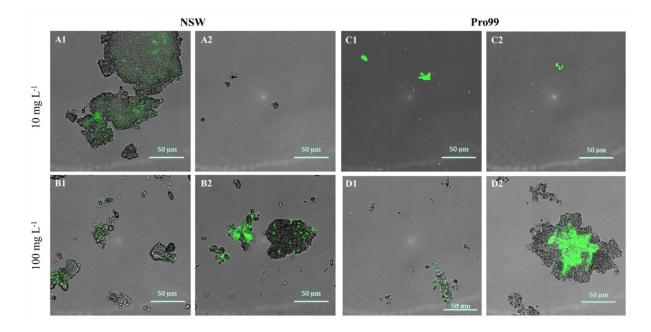


Figure SI.4. Hetero-aggregation of *Prochlorococcus sp.* MED4 (green) and nCeO₂ (10 and 100 mg L^{-1}) formed in natural oligotrophic seawater (A; 10 mg L^{-1} and B; 100 mg L^{-1}) and Pro99 media (C; 10 mg L^{-1} and D; 100 mg L^{-1}). Images were captured using fluorescent microscopy under brightfield and GFP fluorescent and subsequently were merged.

SI.5 References

1. Moore, L. R.; Post, A. F.; Rocap, G.; Chisholm, S. W., Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. *Limnology and Oceanography* **2002**, *47* (4), 989-996.

2. Tyler, R. H.; Boyer, T. P.; Minami, T.; Zweng, M. M.; Reagan, J. R., Electrical conductivity of the global ocean. *Earth Planets Space* **2017**, *69*, 156.