Figure S1: Root mean squared error (RMSE) and Kendall’s tau for each full model when predictions were made on the training and test data, respectively. Lower RMSE and higher Kendall’s Tau estimates for predictions made on the training compared to test data indicates overfitting. Better performing models appear in the top left corner of each facet, while poor-performing models appear in the bottom left of each facet.
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Figure S2: RMSE and Kendall's tau for each full and nested model built using the following algorithms: boosted k-nearest neighbor Cubist (Boosted kNCub), conditional inference tree (cTree), elastic net regression, multivariate adaptive regression splines (MARS), partial least squares (PLS), regularized random forest (regRF), random forest (RF), support vector machines with a linear kernel (SVM linear) and weighted k-nearest neighbor (wKNN). Better performing sets of models cluster in the top left corner of each facet, while poor-performing sets of models cluster in the bottom left of each facet.
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Figure S3: Convex hull showing how nested models built using each combination of predictor types cluster with regards to predictive performance on the test data. Better performing sets of models cluster in the top left corner of each facet, while poor-performing sets of models cluster in the bottom left of each facet. 
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Figure S4: Convex hull showing how the nine algorithms used to develop the nested models cluster with regards to predictive performance on the test data. To facilitate readability and due to poor performance of nested models built using just geospatial data or just stream traits data across all nine algorithms, these models were not included in this figure. Better performing sets of models cluster in the top left corner of each facet, while poor-performing sets of models cluster in the bottom left of each facet.
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Figure S4:  Permutation variable importance of the 30 factors that were most strongly associated with accurately predicting E. coli concentration in the test and training data using the full XgBoost model. The black point shows the median importance, and the green line shows the upper and lower 5% and 95% quantiles of importance values from the 150 permutations performed.  Avg Sol Rad = Average Solar Radiation; Elev=elevation; FP=Floodplain; SPDES=wastewater discharge sites; Soil =Hydrologic Soil Type.
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Figure S5:  Permutation variable importance of the 30 factors that were most strongly associated with accurately predicting E. coli concentration in the test and training data using the full regularized random forest model. The black point shows the median importance, and the green line shows the upper and lower 5% and 95% quantiles of importance values from the 150 permutations performed.  Avg Sol Rad = Average Solar Radiation; Elev=elevation; FP=Floodplain; SPDES=wastewater discharge sites; Soil=Hydrologic Soil Type.
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Figure S6:  Permutation variable importance of the 30 factors that were most strongly associated with accurately predicting E. coli concentration in the test and training data using the partial least squares model and the physicochemical water quality, stream traits, and weather. The black point shows the median importance, and the green line shows the upper and lower 5% and 95% quantiles of importance values from the 150 permutations performed. Avg Sol Rad = Average Solar Radiation.
[image: ]



Figure S7:  Permutation variable importance of the 30 factors that were most strongly associated with accurately predicting E. coli concentration in the test and training data using the support vector machine model and the physicochemical water quality, and weather factors. The black point shows the median importance, and the green line shows the upper and lower 5% and 95% quantiles of importance values from the 150 permutations performed.  Avg. Sol Rad = Average Solar Radiation.
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Figure S8: Permutation variable importance of the 30 factors that were most strongly associated with accurately predicting E. coli concentration in the test and training data using the partial least squares model and the physicochemical water quality, and weather factors. The black point shows the median importance, and the green line shows the upper and lower 5% and 95% quantiles of importance values from the 150 permutations performed.  Avg. Sol Rad = Average Solar Radiation.
[image: ]
[bookmark: OLE_LINK3]
Table S1: Factors included in the analyses reported here. Values for all weather factors except for temperature were calculated for 0-1, 1-2, 2-3, 3-4, 4-5, 5-10, 10-20, and 20-30 d before sample collection (BSC). Values for temperature were calculated for 0-5, 5-10, 10-20, and 20-30 d BSC due to the strong correlation between temperature 0-1, 1-2, 2-3, 3-4, and 4-5 d BSC. This is a modified version of the table published in Weller et al. 2019 (Weller et al., 2020). 
	Factor
	Description
	Data Type a
	Date
	Citations and Websites

	Data Extracted from Publicly-Available Databases
	
	
	

	[bookmark: _Hlk10578426][bookmark: _Hlk532462094]
	Culverts: Carrying a waterway under a state highway and have a span of 5 to 20 feet
	
	2014
	(NYS Large Culverts; Bridge Inventory Manual, 2006; Culvert inventory and inspection manual, 2006)

	
	
	Present
	Were culverts present upstream?
	Gs
	
	

	
	
	Density 
	Upstream density (no. of per 10 km2)
	Gs
	
	

	
	Dams
	
	
	2018
	(Dams)

	
	
	Density 
	Upstream density (no. of per 10 km2)
	Gs
	
	

	
	Road Crossing
	
	
	2015
	(USGS National Transportation Dataset)

	
	
	Density
	Upstream density (no. of per 10 km2)
	Gs
	
	

	
	
	Min. Dist. 
	The flow path distance to the nearest point upstream where a road crossed the stream (km).
	Gs
	
	

	
	Outfalls: Municipal stormwater outfalls along or near highways (presence is an indicator of urbanization)
	
	2008
	(Outfall and system mapping for illicit discharge detection and elimination (IDDE) in NY; Methodology for the identification and survey of stormwater outfalls within designated MS4 locations for New York State DOT, 2004; Guidance on outfall mapping: What is an outfall, and what should be mapped?, 2006)

	
	
	Present
	[bookmark: OLE_LINK81][bookmark: OLE_LINK82]Were stormwater outfalls present upstream?
	Gs
	
	

	
	
	Density
	Upstream density (no. of per 10 km2)
	Gs
	
	

	
	Municipal Wastewater Discharge Sites: Based on permits issued under the NYSa Pollutant Discharge Elimination System (SPDES)
	
	
	

	[bookmark: _Hlk10577401]
	
	Present
	Were wastewater discharge sites present upstream? 
	Gs
	
	

	
	
	Density 
	Upstream density (no. of per 10 km2)
	Gs
	
	

	
	Industrial Wastewater Discharge Sites: Based on permits issued under the NYSb Pollutant Discharge Elimination System (SPDES)
	
	2018
	(State Pollutant Discharge Elimination System)

	
	
	Present
	Were wastewater discharge sites present upstream? 
	
	
	

	
	
	Density 
	Upstream density (no. of per 10 km2)
	
	
	

	
	In-stream Waterbodies: Bodies of water within the stream channel (e.g., mill ponds, impoundments, lakes)
	
	2017
	(National Hydrography Database)

	
	
	Present
	Were waterbodies upstream? 
	Gs
	
	

	
	
	Density 
	Upstream density (no. of per 10 km2)
	Gs
	
	

	
	Septic System Density
	Upstream density (no. per 10 km2).
	Gs
	2011
	(Septic Systems, New York State, 2011 - CUGIR)

	
	Solid Waste Site: Based on permits issued by NYS that allow application and spreading of manure, human septage, food processing, or other waste
	
	2019
	(Solid Waste Management Facilities | Open Data NY)
	

	
	
	Density 
	Upstream density (no. of per 10 km2)
	Gs
	
	

	[bookmark: _Hlk10548109]
	Land Cover c
	
	2016
	(NLCD 2016 Land Cover (CONUS), 2019; NLCD 2016 Percent Developed Imperviousness, 2019)
	

	
	
	Open Water
	Class 11 in National Land Cover Database (NLCD)
	Gs
	
	

	
	
	Cropland
	Cropland; Class 82 in NLCD
	Gs
	
	

	
	
	Pasture
	Pasture; Class 81 in NLCD
	Gs
	
	

	
	
	Developed
	Developed; Classes 21-24 in NLCD 
	Gs
	
	

	
	
	For-Wet
	Natural cover; Classes 41-43, 51-52, 90, and 95 in NLCD (i.e., forest, shrubland, or wetland)
	Gs
	
	

	
	
	Impervious
	Percent of upstream watershed that was under impervious cover
	Gs
	
	

	
	Watershed Area 
	Total area of upstream watershed (10-km2)
	Gs
	-
	-

	
	Stream Stats Data
	
	
	2019
	streamstats.usgs.gov/ss/

	
	
	Avg. Basin Slope 
	Mean basin lope determined by summing lengths of all contours in basin, multiplying by contour interval, and dividing product by drainage area
	Gs
	
	

	
	
	Elev. Contours, Length
	Total length of all elevation contours in drainage area in miles

	Gs
	
	

	
	
	Elev. Change, Main
	
Change in elevation divided by length between points 10 and 85 percent of distance along main channel to basin divide

	Gs
	
	

	
	
	Elev. Change, Lower
	Change in elevation between points 10 and 85 percent of length along the lower half of the main flow path divided by length between the points
	Gs
	
	

	
	
	Elev. Change, Upper
	Change in elevation between points 10 and 85 percent of length along the upper half of the main flow path divided by length between the points
	Gs
	
	

	
	
	Elev. >1,200 ft, %
	Percentage of basin at or above 1200 ft elevation
	Gs
	
	

	
	
	Basin Lag Factor
	Basin Lag factor as defined in SIR 2006-5112
	Gs
	
	

	
	
	Main Channel, Length
	Length along the main channel from the measuring location extended to the basin divide
	Gs
	
	

	
	
	Channel/Basin Slope
	Ratio of main channel slope to basin slope
	Gs
	
	

	
	
	Soil A, %
	Percentage of area of Hydrologic Soils Type A from SSURGO
	Gs
	
	

	
	
	Soil B, %
	Percentage of area of Hydrologic Soils Type B from SSURGO
	Gs
	
	

	
	
	Water Storage, %
	Percentage of area of storage (lake, ponds, reservoirs, wetlands)
	Gs
	
	

	
	
	Stream Level
	Stream level
	Gs
	
	

	
	
	Stream Order
	Strahler stream order
	Gs
	
	

	
	
	All Channels, Length
	An estimate of miles of stream upstream of a flowline
	Gs
	
	

	Water Quality and Other Conditions at Time of Sample Collection
	
	
	

	[bookmark: _Hlk10549905]
	Air Temp. at site
	Air temperature measured at the sampling site at the time of sample collection (°C)
	Pq
	-
	-

	
	Conductivity
	Conductivity (Log10 uS/cm)
	Pq
	-
	-

	
	Dissolved oxygen
	Dissolved oxygen levels (mg/L)
	Pq
	-
	-

	
	Flow rate
	Flow rate measured 3-6” below the surface (m/s)
	Pq
	-
	-

	
	pH
	pH
	Pq
	-
	-

	
	Turbidity
	Turbidity (Log10 NTU)
	Pq
	-
	-

	
	Water Temp.
	Water temperature (°C)
	Pq
	-
	-

	Field-Collected Site Data 
	
	
	

	
	Ditch
	Did a roadside ditch intersect the stream < 20 m upstream of the sample site?
	St
	-
	-

	
	Bottom Substrate: Composition of the stream bottom in the reach 10 m upstream of the sample site. The different categories of substrate were boulder, bedrock, cobble or larger, coarse gravel, fine gravel, sand, clay, and organic matter.
	
	-
	(Unified Stream Assessment: A User’s Manual, 2004)

	
	
	Rocky
	Was the substrate that comprised the majority of the bottom rocky (bedrock, boulder, cobble, or gravel) or not rocky (sand, clay, or organic matter/silt)?
	St
	-
	-

	
	
	Sand
	Was sand present along the stream bottom?
	St
	-
	-

	
	
	Clay
	Was clay present along the stream bottom?
	St
	-
	-

	
	
	Organic Matter
	Was organic matter present along the stream bottom?
	St
	-
	-

	
	
	Cobble or Larger
	Were cobble, boulders, or bedrock along the stream bottom?
	St
	-
	-

	
	
	Fine gravel
	Was fine gravel present along the stream bottom?
	St
	-
	-

	
	
	Coarse gravel
	Was coarse gravel present along the stream bottom?
	St
	-
	-

	Weather Data from NEWA Weather Stations
	
	
	

	
	Avg. Air Temp.
	[bookmark: OLE_LINK6][bookmark: OLE_LINK8]Average temperature (°C) either 0-5, 5-10, 10-20 or 20-30 d before sample collection
	W
	-
	newa.cornell.edu

	
	Avg. Solar Radiation
	Average solar radiation (MJ/m2) either 0-1,1-2, 2-3, 3-4, 4-5, 5-10, 10-20 or 20-30 d before sample collection
	W
	-
	newa.cornell.edu

	
	Total rainfall 
	Total rainfall (cm) either 0-1,1-2, 2-3, 3-4, 4-5, 5-10, 10-20 or 20-30 d before sample collection
	W
	-
	newa.cornell.edu


a To assess the relative information gain associated with using different data types to build predictive models, two sets of analyses were performed. In the first set of analyses, each learner and the full set of factors listed in Table S1 were used to develop the full models. In the second set of analyses, the factors listed in Table S1 were divided into four groups: geospatial (Gs); physicochemical water quality, and temperature data collected on-site (Pq); weather data obtained from NEWA weather stations (W); and stream traits (St). Nested models were then built using different combinations of these four data types. Separately, log-linear models were also built using individual physicochemical (conductivity, dissolved oxygen, pH, turbidity, or water temperature) or weather (air temperature at the time of sample collection or rainfall 0-1 d before sample collection) factors, or using air temperature at collection, rainfall 0-1d before sample collection, and turbidity.
b New York State = NYS

c For each land cover class we calculated the proportion of (i) the total watershed area, (ii) the stream corridor (i.e., area 0-60 m from the stream corridor), (iii) the flood plain (based on shapefile downloaded from NYS Department of Environmental Conservation), and (iv) the area immediately upstream (0-100 m) of the sampling site.
Table S2: Performance measures for each model. The 10 best and 10 worst performing models (based on root mean squared-error ranking) are denoted in red and goldenrod, respectively. 
	
	Algorithm
	RMSE a
	Kendall's Tau
	R2
	Model (Full Model, or 
Predictors used to Build Nested Models)
	Model Rank Based on RMSE (Best Model=117)

	Baseline
	
	
	
	
	

	
	Featureless (Baseline)
	0.51
	NA
	-0.02
	Full Model
	97

	Forest and Ensemble Algorithms
	

	
	Node Harvest
	0.44
	0.44
	0.26
	Full Model
	102

	
	Conditional Forest (condRF)
	0.38
	0.55
	0.44
	Full Model
	113

	
	Extreme Gradient Boosting (XgBoost)
	0.37
	0.53
	0.45
	Full Model
	116

	
	Random Forest (RF)
	

	
	
	0.38
	0.54
	0.45
	Full Model
	114

	
	
	0.83
	0.29
	0.14
	Geospatial
	40

	
	
	0.76
	0.44
	0.29
	Physicochemical & Geospatial
	67

	
	
	0.77
	0.42
	0.27
	Physicochemical
	61

	
	
	0.78
	0.4
	0.26
	Physicochemical & Stream Traits
	59

	
	
	0.71
	0.46
	0.37
	Physicochemical & Weather
	87

	
	
	0.71
	0.47
	0.38
	Physicochemical Water, Weather & Stream Traits
	89

	
	
	0.90
	0.23
	0.00
	Stream Traits
	17

	
	
	0.81
	0.29
	0.19
	Weather
	44

	
	
	0.74
	0.48
	0.33
	Weather & Geospatial
	80

	
	
	0.84
	0.27
	0.14
	Weather & Stream Traits
	39

	
	Regularized Random Forest (regRF)
	

	
	
	0.38
	0.54
	0.45
	Full Model
	115

	
	
	0.84
	0.29
	0.12
	Geospatial
	35

	
	
	0.74
	0.47
	0.32
	Physicochemical & Geospatial
	77

	
	
	0.78
	0.41
	0.25
	Physicochemical
	57

	
	
	0.78
	0.40
	0.25
	Physicochemical & Stream Traits
	58

	
	
	0.72
	0.46
	0.37
	Physicochemical & Weather
	85

	
	
	0.71
	0.46
	0.37
	Physicochemical Water, Weather & Stream Traits
	88

	
	
	0.91
	0.23
	-0.02
	Stream Traits
	15

	
	
	0.81
	0.29
	0.19
	Weather
	45

	
	
	0.76
	0.42
	0.29
	Weather & Geospatial
	68

	
	
	0.84
	0.27
	0.13
	Weather & Stream Traits
	36

	Instance-based Algorithms 
	
	

	
	K-Nearest Neighbor (kKNN)
	0.90
	0.27
	0.00
	Full Model
	18

	
	Weighted k-Nearest Neighbor (wKNN)
	

	
	
	0.86
	0.3
	0.09
	Full Model
	28

	
	
	0.86
	0.29
	0.09
	Geospatial
	30

	
	
	0.86
	0.31
	0.09
	Physicochemical & Geospatial
	29

	
	
	0.82
	0.4
	0.17
	Physicochemical
	42

	
	
	0.85
	0.30
	0.10
	Physicochemical & Stream Traits
	33

	
	
	0.82
	0.30
	0.16
	Physicochemical & Weather
	41

	
	
	0.87
	0.27
	0.08
	Physicochemical Water, Weather & Stream Traits
	26

	
	
	0.96
	0.19
	-0.13
	Stream Traits
	7

	
	
	0.93
	0.07
	-0.06
	Weather
	12

	
	
	0.87
	0.26
	0.07
	Weather & Geospatial
	25

	
	
	0.96
	0.09
	-0.14
	Weather & Stream Traits
	6

	Neural Network (NNET)
	0.75
	0.45
	0.30
	Full Model
	74

	Penalized Regression
	

	
	Elastic Net
	

	
	
	0.42
	0.45
	0.32
	Full Model
	107

	
	
	0.86
	0.26
	0.09
	Geospatial
	27

	
	
	0.77
	0.41
	0.26
	Physicochemical & Geospatial
	60

	
	
	0.73
	0.43
	0.34
	Physicochemical
	81

	
	
	0.74
	0.43
	0.33
	Physicochemical & Stream Traits
	79

	
	
	0.71
	0.48
	0.38
	Physicochemical & Weather
	90

	
	
	0.72
	0.47
	0.36
	Physicochemical Water, Weather & Stream Traits
	84

	
	
	0.91
	0.23
	-0.03
	Stream Traits
	14

	
	
	0.75
	0.42
	0.31
	Weather
	76

	
	
	0.76
	0.43
	0.29
	Weather & Geospatial
	66

	
	
	0.79
	0.37
	0.23
	Weather & Stream Traits
	51

	
	Lasso
	0.42
	0.47
	0.33
	Full Model
	108

	
	Ridge
	0.42
	0.43
	0.31
	Full Model
	106

	Regression
	
	
	
	
	

	
	Multivariate Adaptive Regression Splines (MARS)
	

	
	
	0.49
	0.26
	0.06
	Full Model
	99

	
	
	0.99
	0.25
	-0.2
	Geospatial
	4

	
	
	0.8
	0.47
	0.21
	Physicochemical & Geospatial
	48

	
	
	0.8
	0.47
	0.21
	Physicochemical
	49

	
	
	0.8
	0.47
	0.21
	Physicochemical & Stream Traits
	47

	
	
	0.76
	0.4
	0.29
	Physicochemical & Weather
	69.5

	
	
	0.76
	0.4
	0.29
	Physicochemical Water, Weather & Stream Traits
	69.5

	
	
	0.93
	0.09
	-0.08
	Stream Traits
	9.5

	
	
	0.9
	0.19
	0.01
	Weather
	19

	
	
	0.88
	0.26
	0.06
	Weather & Geospatial
	23

	
	
	0.91
	0.22
	-0.01
	Weather & Stream Traits
	16

	
	Partial Least Squares (PLS)
	
	

	
	
	0.52
	0.37
	-0.04
	Full Model
	94

	
	
	0.86
	0.23
	0.09
	Geospatial
	31

	
	
	0.87
	0.35
	0.07
	Physicochemical & Geospatial
	24

	
	
	0.73
	0.44
	0.34
	Physicochemical
	82

	
	
	0.76
	0.41
	0.3
	Physicochemical & Stream Traits
	72

	
	
	0.71
	0.48
	0.39
	Physicochemical & Weather
	91

	
	
	0.69
	0.5
	0.41
	Physicochemical Water, Weather & Stream Traits
	93

	
	
	0.95
	0.23
	-0.11
	Stream Traits
	8

	
	
	0.75
	0.39
	0.30
	Weather
	73

	
	
	0.78
	0.45
	0.24
	Weather & Geospatial
	56

	
	
	0.8
	0.34
	0.21
	Weather & Stream Traits
	50

	
	Principal Component (PCR)
	0.51
	0.36
	-0.02
	Full Model
	95

	
	Log-Linear Regression 
	
	

	
	
	0.89
	0.16
	0.02
	Air Temperature at Collection
	-

	
	
	0.90
	0.05
	0.00
	Conductivity
	-

	
	
	0.86
	0.36
	0.08
	Dissolved Oxygen
	-

	
	
	0.81
	0.35
	0.19
	pH
	-

	
	
	0.90
	0.14
	0.00
	Rainfall 0-1 d before Collection
	-

	
	
	0.78
	0.45
	0.25
	Air Temperature at Collection, Rainfall 0-1 d before Collection, & Turbidity 
	-

	
	
	0.74
	0.44
	0.32
	Turbidity
	-

	
	
	0.90
	0.16
	0.01
	Water Temp
	-

	Rule-based Algorithms
	
	

	
	Cubist (Cubist)
	0.45
	0.42
	0.22
	Full Model
	100

	
	Cubist, Boosted (BoostedCub)
	0.40
	0.48
	0.39
	Full Model
	111

	
	Cubist, Boosted k-Nearest Neighbor (Boosted kNCub)
	

	
	
	0.37
	0.53
	0.47
	Full Model
	117

	
	
	0.93
	0.28
	-0.06
	Geospatial
	13

	
	
	0.84
	0.44
	0.12
	Physicochemical & Geospatial
	34

	
	
	0.84
	0.38
	0.14
	Physicochemical
	38

	
	
	0.84
	0.41
	0.13
	Physicochemical & Stream Traits
	37

	
	
	0.82
	0.36
	0.18
	Physicochemical & Weather
	43

	
	
	0.76
	0.41
	0.3
	Physicochemical Water, Weather & Stream Traits
	71

	
	
	0.99
	0.18
	-0.21
	Stream Traits
	3

	
	
	0.89
	0.24
	0.02
	Weather
	20

	
	
	0.71
	0.48
	0.37
	Weather & Geospatial
	86

	
	
	1.00
	0.16
	-0.22
	Weather & Stream Traits
	2

	
	Cubist, k-Nearest Neighbor (kNCub)
	0.42
	0.46
	0.31
	Full Model
	105

	Support Vector Machines (SVM)
	
	

	
	Linear Kernel
	
	
	
	
	

	
	
	0.41
	0.46
	0.34
	Full Model
	109

	
	
	0.86
	0.25
	0.10
	Geospatial
	32

	
	
	0.77
	0.40
	0.28
	Physicochemical & Geospatial
	64

	
	
	0.73
	0.45
	0.35
	Physicochemical
	83

	
	
	0.76
	0.38
	0.28
	Physicochemical & Stream Traits
	65

	
	
	0.70
	0.49
	0.40
	Physicochemical & Weather
	92

	
	
	0.74
	0.43
	0.32
	Physicochemical Water, Weather & Stream Traits
	78

	
	
	0.93
	0.23
	-0.06
	Stream Traits
	11

	
	
	0.75
	0.42
	0.31
	Weather
	75

	
	
	0.78
	0.43
	0.24
	Weather & Geospatial
	55

	
	
	0.81
	0.32
	0.20
	Weather & Stream Traits
	46

	
	Polynomial Kernel 
	0.45
	0.41
	0.23
	Full Model
	101

	
	Radial Kernel 
	0.40
	0.47
	0.38
	Full Model
	110

	
	Sigmoid Kernel 
	0.43
	0.44
	0.28
	Full Model
	104

	Tree-based Algorithms 
	
	

	
	Conditional Inference Tree (cTree)
	

	
	
	0.43
	0.48
	0.28
	Full Model
	103

	
	
	0.96
	0.09
	-0.14
	Geospatial
	5

	
	
	0.78
	0.46
	0.24
	Physicochemical & Geospatial
	54

	
	
	0.79
	0.46
	0.24
	Physicochemical
	52.5

	
	
	0.79
	0.46
	0.24
	Physicochemical & Stream Traits
	52.5

	
	
	0.77
	0.48
	0.28
	Physicochemical & Weather
	62.5

	
	
	0.77
	0.48
	0.28
	Physicochemical Water, Weather & Stream Traits
	62.5

	
	
	0.93
	0.09
	-0.08
	Stream Traits
	9.5

	
	
	0.88
	0.22
	0.04
	Weather
	21

	
	
	1.03
	0.12
	-0.31
	Weather & Geospatial
	1

	
	
	0.88
	0.22
	0.05
	Weather & Stream Traits
	22

	
	Evolutionary Optimal Trees (EvTree)
	0.49
	0.22
	0.05
	Full Model
	98

	
	Extremely Randomized Trees (exTree)
	0.39
	0.51
	0.42
	Full Model
	112

	
	Regression Tree (CART)
	0.51
	0.15
	-0.02
	Full Model
	96


a Root-mean squared error
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