SUPPLEMENTARY MATERIAL: DETAILED RESULTS FOR MNIST DATASET

551 We report below the detailed evaluation of the performance for MNIST case-study with missing data 552 patterns with $N_S WxW$ gaps, with $N_s = 20, 30, 6$ and W = 3, 3, 9. The results for configuration $N_s = 30$ 553 and W = 3 are reported in the main text (Tab.1).

New MNIST	Model	I-score	R-score	AE-score	C-score
$N_S = 20$	DINEOF	-9.41% (-10.95%)	21.54% (20.48%)	64.36% (65.11%)	96.23%
W = 5	DINConvAE	55.98% (55.39%)	80.98% (80.58%)	93.42% (92.35%)	98.12%
	FP(1)-ConvAE	61.79% (61.63%)	82.22% (81.64%)	87.64% (87.56%)	97.55%
	FP(15)-ConvAE	74.99% (72.80%)	88.78% (87.31%)	91.62% (91.13%)	97.96%
	G(14)-ConvAE	76.50% (75.56%)	89.81% (88.81%)	91.77% (91.21%)	97.91%
$N_{S} = 30$	DINEOF	-8.86% (-10.19%)	13.89% (12.71%)	64.36% (65.11%)	96.23%
W = 5	ConvAE	38.32% (38.16%)	67.42% (67.32%)	93.42% (92.35%)	98.12%
	Zero-ConvAE	53.69% (53.44%)	74.97% (74.44%)	85.67% (85.83%)	97.03%
	FP(15)-ConvAE	69.27% (67.68%)	83.81% (82.54%)	90.22% (90.04%)	97.59%
	G(14)-ConvAE	69.82% (68.52%)	84.96% (83.76%)	90.98% (90.66%)	97.45%
$N_S = 6$	DINEOF	-37.47% (-40.00%)	16.83% (15.50%)	64.36% (65.11%)	96.23%
W = 9	ConvAE	-27.02% (-28.28%)	46.95% (46.44%)	93.42% (92.35%)	98.12%
	Zero-ConvAE	-9.94% (-12.03%)	55.41% (54.09%)	86.52% (86.73%)	97.33%
	FP(15)-ConvAE	26.90% (22.56%)	71.18% (68.45%)	91.03% (90.41%)	97.71%
	G(10)-ConvAE	26.18% (24.73%)	70.70% (69.58%)	90.30% (90.23%)	97.86%

Table 4. Performance of AE schemes in presence of missing data for MNIST dataset: this table complements the results reported in Tab. 1 for other missing data patterns, namely with $N_S = 20, W = 5$, $N_S = 30, W = 5$ and $N_S = 6, W = 9$. We let the reader to the main text and Tab. 1 for additional details.

SUPPLEMENTARY MATERIAL: DETAILED RESULTS FOR SST CASE-STUDY

SST	Model	I-Score	R-score	AE-score
	OI	67.59%	70.97%	_
	01	(57.29%)	(61.00%)	
AE models	FP(5)-EOF(20)	32.52%	34.94%	74.17%
		(39.22%)	(30.39%)	(56.00%)
	FP(5)-EOF(80)	28.01%	30.91%	89.95%
		(34.83%)	(25.28%)	(64.53%)
	Zero-ConvAE ₁	89.12%	89.65%	67.42%
	Zero-CollvAL ₁	(86.98%)	(87.33%)	(60.41%)
	FP(10)-ConvAE ₁	87.63%	89.82%	83.81%
	IT(10)-CONVAE	(85.24%)	(87.28%)	(77.20%)
	G(8)-ConvAE ₁	89.08%	89.51%	84.22%
	G(0)-CONVAE	(87.89%)	(88.25%)	(76.32%)
	Zero-ConvAE ₂	86.70%	87.14%	67.20%
	Zero-ColivAL ₂	(86.37%)	(86.87%)	(54.77%)
	FP(10)-ConvAE ₂	88.71%	89.14%	<u>86.24%</u>
	TT(T0)-CONVAL2	(85.02%)	(85.49%)	(80.76)
	G(8)-ConvAE ₂	90.47%	90.98%	86.33%
		(88.00%)	(88.39%)	(78.33%)
GENN models	Zero-GENN ₁	85.46%	86.71%	-94.84%
	Zelo-GEINN1	(79.39%)	(80.30%)	(-172.68%)
	FP(15)-GENN ₁	89.22%	90.07%	<u>92.61%</u>
	FF(13)-OEMN ₁	(87.45%)	(88.50%)	(90.18%)
	G(12)-GENN ₁	89.83%	90.56%	92.23%
		(89.16%)	(90.00 %)	(90.98%)
	FP(1)-GENN ₂	86.60%	87.48%	-141.64%
	$\Gamma r(1)$ -OEMM2	(77.38%)	(78.01%)	(-235.50%)
	FP(15)-GENN ₂	<u>90.56%</u>	<u>91.33%</u>	93.04%
	11 (1 <i>5)</i> -OEMN2	(85.93%)	(87.26%)	(91.17%)
	G(12)-GENN ₂	91.10%	91.83%	92.36%
	0(12)-0E1112	(87.98%)	(88.81%)	(90.37%)

Table 5. Performance on SST dataset: We evaluate for each model interpolation, reconstruction and auto-encoding scores, resp. I-score, R-score and AE-score, in terms of percentage of explained variance resp. for the interpolation of missing data areas, the reconstruction of the whole image with missing data and the reconstruction of gap-free images. For each model, we evaluate these score for the training data (first row) and the test dataset (second row in brackets). We consider four different auto-encoder models, namely 20 and 80-dimensional EOFs and ConvAE_{1,2} models, and two GENN models, GENN_{1,2}, combined with three interpolation strategies: the classic zero-filling strategy (Zero) and proposed iterative fixed-point (FP) and gradient-based (G) schemes, the figure in brackets denoting the number of iterations. For instance, FP(10)-GENN₁ refers to GENN₁ with a 10-step fixed-point interpolation scheme. The EOFs are trained from gap-free data. We also consider an Optimal Interpolation (OI) with a space-time Gaussian covariance with empirically-tuned parameters. We refer the reader to the main text for the detailed parameterization of the considered models.