
   

Supplementary Material 

1 Supplementary Data 

1.1 Supplementary Methods 

1.1.1 Scoring of sleep stages 

For the purpose of sleep scoring and estimation of time of awakening, EEG and EOG channels were 
temporarily bandpass-filtered between 0.3 - 35 Hz, and the bipolar EMG channel was bandpass-filtered 
between 1 - 100 Hz (filtering for display only). Bipolar channels F4-TP9, C4-TP9, O2-TP9 and backup 
channels F3-TP10, C3-TP10, O1-TP10 were temporarily added to aid in identification and assessment 
of common EEG features such as K-complexes and slow waves (TP9 and TP10 approximating M1 and 
M2, respectively). A Morlet wavelet time-frequency plot for channel Oz was also added to aid in 
judgement of posterior dominant alpha-rhythm, low amplitude mixed frequency (LAMF) activity, and 
slowing of background activity. A marker indicating estimated time of awakening was added  to the 
data during recording and checked offline. The last ten 30 s EEG sleep epochs, relative to time of 
awakening, were scored in accordance with the AASM Manual for Scoring of Sleep and Associated 
Events (Berri et al., 2018). 

1.1.2 Pre-processing of EEG 

Data was pre-processed using the PREP Pipeline (EEG-Clean-Tools) EEGLAB-plugin (Bigdely-
Shamlo et al., 2015), including line noise removal, robust average re-referencing, and automatic 
rejection and interpolation of bad channels. After pre-processing, data was high-pass filtered at 0.75 
Hz1. Independent component analysis (ICA) was performed using the extended infomax algorithm 
(Bell and Sejnowski, 1995). To avoid rank deficiency, principal component analysis (PCA) was 
performed prior to ICA, and the number of principal components to keep was adjusted to account for 
reduction in rank by average referencing and interpolation of bad channels. 

Independent components (ICs) were automatically classified using the IClabel-plugin, which for each 
IC assigns the probability that the component represents brain, muscle, eye, heart, line nose, channel 
noise or other sources (Pion-Tonachini et al., 2019). Components were automatically rejected based 
on their IClabel probabilities if they met any one of the following heuristic criteria: 

1. Maximum P(heart) for the recording and P(heart) > 10%, 
2. P(brain) < 15 %, or 
3. P(brain)/P(artefact) < 2, where P(artefact) is the sum of the probabilities for muscle, eye, heart, 

line nose and channel noise artefacts. 

The cleaned data was low-pass filtered at 40 Hz, and the current source density (surface Laplacian) 
was calculated by a spherical spline algorithm (Perrin et al., 1989), implemented in the CSD Toolbox 

                                                
1 It is often recommended to high-pass filter data at 1 Hz before independent component analysis, but we chose 0.75 Hz 
to minimize attenuation of slow wave activity in the 0.5-2 Hz band. 
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(Kayser and Tenke, 2006). The combination of ICA cleaning and spherical-spline Laplacian has been 
shown to considerably reduce contamination of EEG by muscle artifacts (Fitzgibbon et al., 2015). 

1.1.3 Generalized linear mixed models 

Because we had multiple repeated measurements from the same participant (non-independent and 
repeated observations), and an unequal number of observations for each condition (unbalanced design), 
we chose to use mixed effect models for the analysis. In addition to fixed predictors, mixed effects 
models include random effects that can be used to account for the structure of the data. For example, 
by including participant ID as a random intercept term, we can account for individual differences in 
mean response. 

The effect of sleep stage on signal diversity was assessed using a generalized linear mixed model with 
sleep stage as a fixed factor (including intercept), and participant and trial as random intercepts. Sleep 
trials were coded by unique numbers (implicit nesting) to reflect that trials were nested within 
participants (no trial occurs for more than one participant). Within each sleep trial, we expect that the 
observations from different sleep epochs will be correlated to each other, but that the correlation will 
be smaller the farther apart sleep epochs are from each other. To account for this, and to allow for 
unequal variances, we specified a heterogeneous first-order auto-regressive residual variance-
covariance structure for the sleep epochs (by entering epochs as a repeated effect). 

For awakenings in sleep stage NREM2, the effect of experience report (NE, DEWR or DE) on signal 
diversity of the last sleep epoch before awakening was assessed using a generalized linear mixed model 
with experience classification as the fixed factor (including intercept) and subject as a random 
intercept. 

Finally, for NREM2 awakenings with reported dream experience (DE), the effect of subjective ratings 
of experience on a five-point scale from exclusively thought-like to exclusively perceptual on frontal 
and posterior signal diversity was assessed using a generalized linear mixed model with thought-
versus-perceptual rating as a fixed continuous covariate (including intercept) and subject as a random 
intercept. 

We first fitted the models described above as simple linear mixed models, with each of the signal 
diversity measures (SD) as the response. However, visual inspection of residuals from the resulting 
models indicated considerable heteroscedasticity of the residuals (the size of the residuals was smaller 
for higher predicted SD values). This is not very surprising, as signal diversity values are bounded by 
1 from above, and some of our data were close to this limit. To account for this, we replaced the 
dependent variable SD in each of the models by 1 - SD, and instead fitted generalized linear mixed 
models with gamma-distributed response (right skewed with increasing variance as a function of the 
mean) and an identity link function, before back-transforming the results. This approach (incorrectly) 
models SD as unbounded from below, but has the benefit (compared to using other link functions) that 
the response is still a linear function of the predictor variables. This is important for the analysis of SD 
as a function of thought-perceptual ratings (modelled as a continuous covariate), for which we 
hypothesize a linear relationship (Lo and Andrews, 2015). 

For the gamma GLMM model of LZC as a function of experience classification of NREM2 dream 
reports, the confidence interval for the estimated between-participant variation was gigantic (and 
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obviously not correct for a variable bounded to the unit interval) (Supplementary Table 1), which 
could indicate problems with model fitting (Bolker et al., 2009). The gamma model is not a completely 
faithful description of the data, since signal diversity values are only bounded on one side. Furthermore, 
the small sample available for this analysis happened to include two LZC values that would often be 
classified as extreme (less than Q1 – 3´IQR, i.e. more than 3 times the interquartile range below the 
first quartile). Excluding only the single most extreme LZC value from the analysis (or winsorizing the 
two most extreme values to Q1 – 2.6´IQR) resulted in a plausible estimated confidence interval for the 
between-participant variation, with otherwise broadly similar results. Hence, the problem is likely 
caused by a pair of “extreme” (but probably perfectly valid) observations in a small sample, which 
seems to lead to a unrealistic random effect confidence interval for the gamma model.    

However, for the categorical factors sleep stage and experience classification, instead of using gamma 
GLMMs to model 1 - SD as described above, an alternative approach that explicitly bounds signal 
diversity to the unit interval is to assume that SD follows a beta distribution (only non-zero between 0 
and 1), and model the dependency of SD on sleep stage and experience class by generalized linear 
mixed models with logit (log-odds) link functions. We did this using the R (R Core Team, 2020; 
RStudio Team, 2020) package glmmTMB (Brooks et al., 2017). For the analysis of SD as a function 
of sleep stage we modelled the correlation between sleep epochs by an additional random effect (G-
side effect) with (homogenous) first order variance-covariance structure, instead of the repeated 
measures residual effect (R-side effect) used to account for correlation between epochs in the gamma 
GLMM model in SPSS. Otherwise random effects were the same as for the gamma GLMMs. The 
significance of sleep stage and experience were assessed by log-likelihood ratio tests comparing these 
beta models to the corresponding models with only random effects and no fixed predictors. Tests for 
pairwise contrasts between sleep stages and experience classes were performed on the logit scale. After 
correcting for multiple comparisons using the adjusted significance levels described below, all 
statistical tests gave the same results as for the gamma GLMMs. In particular, the beta GLMM and 
gamma GLMM results for LZC as a function of experience classification of NREM2 dream reports 
were similar. 

1.1.4 Controlling family-wise error rate for multiple comparisons 

We tested the effect of sleep stage and experience classification on each of the three diversity measures, 
and the effect of thought-perceptual ratings on both posterior and frontal diversity. In addition to these 
12 top level tests, for each signal diversity measure we also performed all 10 pairwise comparisons 
between the five different sleep stages, and the three pairwise comparisons between the different 
experience classes (NE, DEWR, DE). To adjust for multiple comparisons, we used the inheritance 
procedure (Goeman and Finos, 2012), which is a method for family-wise error control (controlling the 
overall probability of making one or more false discoveries at the specified level a, rather than just 
controlling the expected rate of false discoveries) when testing many hierarchically related hypotheses. 
Starting with a critical level for significance at a = 0.05, this "alpha-wealth" was distributed equally to 
each of the 12 top level hypothesis2, yielding an adjusted significance level a/12 = 0.0042 for the top 
level tests. Since sleep stage had significant effects on signal diversity, the "alpha-wealth" from each 

                                                
2 Technically, this corresponds to choosing specific, unequal weights for the leaf node hypotheses, which can be freely set 
before testing, as long as the weight of a "parent" hypothesis is always equal to the sum of the weights for its "children" 
hypotheses. Since the leaf nodes are not all at the same level of detail in our case, equal leaf weights were not the most 
natural choice. 
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of these three tests were further distributed to their respective "heirs", yielding an adjusted significance 
level of a/(12×10) = 0.00042 for each of the 10 pairwise comparisons between different sleep stages. 
"Alpha-wealth" from significant pairwise comparisons between sleep stages were further distributed 
to their "sibling" hypotheses, but this did not lead to any further significant hypotheses3. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
3 If all hypotheses within a "branch" are significant, “alpha-wealth” can also be inherited by more distant "relatives". A 
further improvement to the procedure is possible in the case of a (stricter) logical hierarchy of hypotheses. 
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2 Supplementary Figures and Tables 

2.1 Supplementary Figures 

 

Supplementary Figure 1. Posterior EEG signal diversity versus dream experience classification. 
Mean posterior (see Figure 1a) LZC, ACE and SCE of the last 30 s sleep epoch before NREM2 
awakenings, versus experience classification of subsequent dream reports (DE = dream experience, 
DEWR = dream experience without recall of contents, NE = non-experience). Observations are 
plotted on top of corresponding boxplots. Participant number (S0, S1, …, S16) is indicated by marker 
fill color, and observations are displaced slightly along x-axis to avoid overlap.  
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Supplementary Figure 2. Relative EEG bandpower versus sleep stage. (A) Power in the delta 
(0.75-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-40 Hz) bands, relative 
to total power in the 0.75-40 Hz pass band, for all 30 s sleep epochs versus sleep stage. Power was 
averaged over central channels and over all the 8 s windows contained within one 30 s sleep epoch. 
Observations are randomly jittered along x-axis to reduce overlap, and participant number (S0, …, 
S16) is indicated by marker fill color. Grand mean values for each sleep stage is indicated by black 
diamonds. (B) Power for the 30 s sleep epochs versus sleep stage (0 = W, 1 = NREM1, 2 = NREM2, 
3 = NREM3, 4 = REM), plotted separately for each study participant (S0, …, S16). Fill color 
indicates sleep stage, and diamond markers indicate participant mean values for each stage.  
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Supplementary Figure 3. Relative EEG bandpower versus dream experience classification. (A) 
Central power in the delta (0.75-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma 
(30-40 Hz) bands, relative to total power in the 0.75-40 Hz pass band, for the last 30 s sleep epoch 
before NREM2 awakenings, versus experience classification of subsequent dream reports (DE = 
dream experience, DEWR = dream experience without recall of contents, NE = non-experience). 
Power was calculated separately for each channel in the central channel selection and each 8 s 
window used for calculation of signal diversity measures, then averaged over channels and over all 
the 8 s windows contained within one 30 s sleep epoch. Observations are plotted on top of 
corresponding boxplots. Participant number (S0, …, S16) is indicated by marker fill color, and 
observations are displaced slightly along x-axis to avoid overlap. (B) Posterior relative power in the 
delta (0.75-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-40 Hz) bands (see 
Figure 1a for illustration of posterior and central channel selections). Otherwise as in panel (A). 
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Supplementary Figure 4. Relative EEG bandpower versus thought-perceptual rating of dream 
experience. (A) Power in the delta (0.75-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and 
gamma (30-40 Hz) bands for posterior channel selection (see Figure 1a), relative to total power in the 
0.75-40 Hz pass band, for the last 30 s sleep epoch before NREM2 awakenings with recalled dream 
experience, versus thought-perceptual ratings of dream contents (1 = exclusively thought-like, 5 = 
exclusively perceptual). Participant number (S0, …, S16) is indicated by marker fill color, and 
observations are displaced slightly along x-axis to avoid overlap. (B) Frontal (see Figure 1a) EEG 
bandpower for the last 30 s sleep epoch before NREM2 awakenings with recalled dream experience, 
versus thought-perceptual ratings of dream content. 
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2.2 Supplementary Tables 

Supplementary Table 1. Signal diversity modelled as a function of sleep stage. Results for signal 
diversity modelled as a function of sleep stage, including estimates of between-participant and 
between-trial variance (back transformed from identity link gamma GLMM for 1–SD). 

Response Fixed effect df1 df2 F sig.      
LZC sleep stage 4 139 32.5 <.0001  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper  NREM1 NREM2 NREM3 REM 
 wake .976 .002 .971 .981   .2068 <.0001 <.0001  .5575 
 NREM1 .974 .002 .970 .979   <.0001 <.0001  .4016 
 NREM2 .959 .002 .955 .963      .0049  .0065 
 NREM3 .947 .005 .937 .956      .0002 
 REM .981 .008 .965 .997      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) 4.77e-5 2.24e-5 2.13 .0333 1.90e-5   .0001   
 variance (participant * trial)  4.35e-5 1.17e-5 3.71 .0002 2.57e-5 7.39e-5   
           

Response Fixed effect df1 df2 F sig.      
ACE sleep stage 4 169 67.7 <.0001  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper  NREM1 NREM2 NREM3 REM 
 wake .906 .005 .896 .916    .1295 <.0001 <.0001  .0491 
 NREM1 .902 .005 .893 .912   <.0001 <.0001  .0228 
 NREM2 .873 .004 .864 .883    <.0001 <.0001 
 NREM3 .828 .007 .814 .843     <.0001 
 REM .932 .013 .906 .959      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0003   .0001 2.45   .0144   .0001 .0006   
 variance (participant * trial)  .0001 2.88e-5 3.99 <.0001 7.05e-5 .0002   
           

Response Fixed effect df1 df2 F sig.      
SCE sleep stage 4 235 37.4 <.0001  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper  NREM1 NREM2 NREM3 REM 
 wake .755 .005 .745 .765   .1163 <.0001 <.0001  .5363 
 NREM1 .751 .004 .742 .760   <.0001 <.0001  .3901 
 NREM2 .740 .004 .731 .749    <.0001  .1111 
 NREM3 .711 .005 .700 .721      .0008 
 REM .765 .016 .734 .796      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0002 9.95e-5 2.35   .0188 .0001 .0005   
 variance (participant * trial)  .0002 3.44e-5 5.04 <.0001 .0001 .0003   

 

 

 

 

 

 

 

 



  Supplementary Material 

 10 

Supplementary Table 2. NREM2 signal diversity modelled as a function of experience class. 
Results for NREM2 signal diversity modelled as a function of experience class, including estimates 
of between-participant variance (back transformed from identity link gamma GLMM for 1–SD). 

Response Fixed effect df1 df2 F sig.      
LZC experience class 2 40 .516 .6009  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper   DEWR DE  
 NE .956 .007 .941 .971    .6889  .6679  
 DEWR .960 .007 .947 .974     .3266  
 DE .953 .004 .945 .960      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) 2.42e-6 5.41e-5 .045 .9643 2.45e-25 2.40e+13a   
a Note the gigantic CI for the estimated between-participant variance, indicating possible problems with model fitting. Excluding/winsorizing the 
smallest one/two LZC values lead to plausible CI, and gave otherwise similar results, as did a beta GLMM with logit link (Supplementary Methods). 
           

Response Fixed effect df1 df2 F sig.      
ACE experience class 2 56 .254 .7766  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper   DEWR DE  
 NE .866 .011 .843 .889    .4808  .6535  
 DEWR .856 .010 .835 .877     .6362  
 DE .861 .006 .848 .875      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0004 .0002 1.84 .0655 .0001 .0010   
           

Response Fixed effect df1 df2 F sig.      
SCE experience class 2 54 1.03 .3626  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper   DEWR DE  
 NE .725 .008 .708 .741    .6944  .2224  
 DEWR .728 .007 .714 .743     .3764  
 DE .734 .005 .724 .745      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0002 .0001 2.01 .0446 9.32e-5 .0007   
           

           

Response Fixed effect df1 df2 F sig.      
LZCback experience class 2 51 .671 .516  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper   DEWR DE  
 NE .948 .009 .930 .966    .2775 .5650  
 DEWR .960 .007 .947 .974     .3786  
 DE .954 .004 .946 .962      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) 5.12e-5 6.60e-5 .775 .4381 4.09e-6 .0006   
           
Response Fixed effect df1 df2 F sig.      
ACEback experience class 2 56 .135 .874  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper   DEWR DE  
 NE .855 .012 .831 .879    .7466 .9516  
 DEWR .850 .011 .828 .872     .6058  
 DE .856 .006 .842 .869      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0003 .0002 1.60 .1092 8.95e-5 .0010   
           
Response Fixed effect df1 df2 F sig.      
SCEback experience class 2 55 .881 .420  sig. (pairwise comparison) 
 EMMs estimate std. err. CIlower CIupper   DEWR DE  
 NE .721 .010 .702 .741    .8795 .4160  
 DEWR .720 .009 .702 .737     .2582  
 DE .729 .006 .717 .741      
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0003 .0002 1.68 .0923 9.11e-5 .0009   
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Supplementary Table 3. Signal diversity for NREM2 awakenings with dream experience, 
modelled as a function of thought-perceptual rating of dream contents. Results for NREM2 
signal diversity modelled as a function of thought-perceptual rating of dream contents, including 
estimates of between-participant variance (back transformed from identity link gamma GLMM for 1–
SD). 

Response Fixed effect df1 df2 F sig. estimate std. err. t CIlower CIupper 
LZCback  thought-percept 1 34 9.96 .0033 .0076 .0024 3.16 .0027 .0124  
 (intercept)    <.0001 .9391 .0075 8.10 .9238 .9543 
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0001 .0001 1.30 .1950 3.01e-5 .0006   
           
Response Fixed effect df1 df2 F sig. estimate std. err. t CIlower CIupper 
LZCfront thought-percept 1 31 4.45 .0432 .0067 .0032 2.11 .0002 .0132 
 (intercept)    <.0001 .9121 .0097 9.05 .8924 .9319 
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0003 .0002 1.19 .2353 5.37e-5 .0015   
           

Response Fixed effect df1 df2 F sig. estimate std. err. t CIlower CIupper 
ACEback thought-percept 1 32 4.27 .0472 .0074 .0036 2.07 9.89e-5 .0147 
 (intercept)    <.0001 .8399 .0107 14.9 .8180 .8618 
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0004 .0003 1.36 .1725 8.95e-5 .0016   
           
           
Response Fixed effect df1 df2 F sig. estimate std. err. t CIlower CIupper 
ACEfront thought-percept 1 29 2.31 .1398 .0055 .0036 1.52 .0019 .0128 
 (intercept)    <.0001 .8190 .0113 16.0 .7960 .8420 
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0006 .0004 1.58 .1130 .0002 .0020   
           

Response Fixed effect df1 df2 F sig. estimate std. err. t CIlower CIupper 
SCEback thought-percept 1 34 .021 .8864  .0004 .0029 .144  .0055 .0063 
 (intercept)    <.0001 .7301 .0080 33.7 .7137 .7464 
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0001 .0002 .945 .3446 1.79e-5 .0011   
           
Response Fixed effect df1 df2 F sig. estimate std. err. t CIlower CIupper 
SCEfront thought-percept 1 29 .370 .5478 -.0016 .0026 -.608 -.0070 .0038 
 (intercept)    <.0001 .7230 .0087 32.0 .7053 .7407 
 Random effect covariance estimate std. err. Z sig. CIlower CIupper   
 variance (participant) .0004 .0002 1.93 .0532 .0002 .0012   
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Supplementary Table 4. Summary of data used for analysis. Counts of data used for analysis of 
how signal diversity varies with sleep stage, experience classification (DE = dream experience, 
DEWR = dream experience without recall of contents, NE = non-experience) of NREM2 awakening 
reports and thought-perceptual rating (1 = exclusively thought-like, 5 = exclusively perceptual) of DE 
NREM2 awakening reports. 

  Sleep epochs Experience class Thought-perceptual 
rating 

Participant Sleep 
trials Wake NREM1 NREM2 NREM3 REM NE DEWR DE 1 2 3 4 5 

0 7 16 49 5 0 0 0 0 1 0 0 0 1 0 
1 7 15 36 12 0 0 0 0 0 0 0 0 0 0 
2 11 0 0 75 33 0 1 0 5 0 2 1 1 1 
3 6 0 21 39 0 0 0 0 4 0 0 0 1 2 
4 6 0 7 51 2 0 3 0 2 0 1 1 0 0 
5 6 0 6 49 5 0 0 1 3 0 1 0 0 2 
6 6 0 4 56 0 0 0 1 4 2 1 0 0 1 
7 6 0 7 53 0 0 0 0 6 0 3 1 1 0 
8 4 1 19 20 0 0 0 2 1 0 0 1 0 0 
9 6 10 8 40 2 0 0 1 2 0 1 0 1 0 

10 5 0 5 45 0 0 2 1 2 0 1 0 0 1 
11 7 0 4 64 2 0 0 3 2 0 0 1 1 0 
12 8 0 1 60 9 10 0 0 5 1 1 3 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 6 21 24 15 0 0 0 0 3 0 0 1 1 1 
15 2 9 1 9 0 0 0 0 1 0 0 1 0 0 
16 4 0 14 26 0 0 3 0 0 0 0 0 0 0 
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