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Size dependence. Our simulations occur on a fixed
finite size network. All simulations presented are con-
ducted on networks with N = 10* nodes. We verify that
our results are not considerably influenced by finite-size
effects by repeating simulations for five network sizes.
Figure S1 shows that the critical growth of the total
infected fraction ¢; above P* > 0.5, corresponding
to Fig. 1d in the main text, is insensitive the system
size, even when the number of nodes is increased by
two orders of magnitude (N = 10* to 10°). We hence
anticipate our system size N = 10* to be sufficiently
large to capture the general dynamics of this spread.

Estimate of characteristic disease spreading
timescales. For the case of a recovery-free population,
we calculate the shortest possible time 7o at which the
infected fraction plateaus in the limit of high disease in-
fectivity P*. As time progresses, the disease spreads ra-
dially outward. Because we consider a square network
comprising N; nodes in total, v/N; on a side, the lead-
ing edge of the circular infected region first reaches the
boundary of the population when 7 ~ \/N;/2. However,
the total infected fraction can continue to grow: it only
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FIG. 1. Critical growt~h of the total infected fraction ¢; above
a critical infectivity P* > 0.5 for a recovery-free population.
Network size is varied logarithmically from N = 10* to 10°
Wigh no discernible difference (some curves lie beneath N =
10%).

T These authors contributed equally to this work.
* To whom correspondence should be addressed.
E-mail: ssdatta@princeton.edu

plateaus when it spans the entire 2D network, including
its corners. This occurs when the radius of the infected
region is equal to half the diagonal of the square network,
Fro~ (VNE/2) x V2 = /N2

For the case of a population with recovery duration 7,
we extend this calculation to estimate the time at which
the infected fraction of the population will peak, 7, as
well as the time at which the infected fraction of the
population reaches zero after all individuals recover, 7¢,
again in the limit of high disease infectivity. As time pro-
gresses, the disease spreads radially outward in a circular
infected region, followed by an inner circular region of
recovery that spreads at the same rate but is delayed by
7. We consider two separate regimes: the “thin pulse”
regime with 7. < v/N;(1/v/2—1/2), and the “thick pulse”
regime with 7. > /N;(1/v2 — 1/2).

For a thin pulse, as in the recovery-free case, the lead-
ing edge of the infected region first reaches the boundary
of the population when 7 ~ /N;/2 (Fig. 2a). At this
time, the total infected fraction is nearly maximal, and
we therefore approximate 7, ~ /N¢/2. As time pro-
gresses, the leading edge of the region of recovery then
first reaches the boundary of the population at a time
7 ~ /N;/2 + 7. (Fig. 2b). Both regions continue to
spread into the corners of the square boundary, and the
leading edge of the infected region eventually reaches the
corners at a time 7 ~ 1/N;/2 as in the recovery-free
case (Fig. 2c). Subsequently, the region of recovery con-
tinues to grow; the total infected fraction continues to
decrease, eventually reaching zero when the region of re-
covery has reached the corners of the square boundary,
Tr =/ Ne/2+ 70

For a thick pulse, the leading edge of the infected re-
gion again first reaches the boundary of the population
when 7 ~ /N;/2 (Fig. 2d). The leading edge of the
infected region then reaches the corners of the square
boundary at a time 7 ~ 4/N;/2 as in the recovery-
free case (Fig. 2e). Thus, the time at which the in-
fected fraction is maximal is between these two times:
VN /2 S 7y S /Nt /2. As time progresses, the region of
recovery then continues to grow, eventually first reach-
ing the boundary of the population at 7 ~ /N;/2 + 7.
(Fig. 2f). Subsequently, the region of recovery contin-
ues to grow; the total infected fraction continues to de-
crease, eventually reaching zero when the region of re-
covery has reached the corners of the square boundary,
T~ /Ny /2 + 70

For our simulations with N, = 10%, the transition be-
tween the thin and thick pulse regimes occurs at 7,. &~ 21;
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FIG. 2. Schematics showing the growth of the regions of in-
fection (dark blue) and recovery (light green) over time. Top
row shows the thin pulse regime with low 7, while bottom
row shows the thick pulse regime with high 7.. In the thin
pulse regime, (a) the leading edge of the infected population
reaches the boundary first, (b) followed by the leading edge
of the recovered population, (c) followed by the leading edge
of the region of infection circumscribing the entire population.
However, in the thick pulse regime, (d) while the leading edge
of the infected population again reaches the boundary first,
(e) the region of infection reaches the corners of the square

lattice before (g) the leading edge of the recovered population
reaches the boundary.
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therefore, our analysis of the example system with 7. = 4
presented in the main text is in the thin pulse regime,
with 7, & N;/2 ~ 50 and 7y ~ \/N/2 + 7, ~ 75 as
reported in the main text. Together with Eq. 2, these es-
timates provide a universal scaling for the peak infection
time, ¢, = ¢(7,) (Figs. 3d-f insets).

SUPPORTING MOVIE CAPTIONS

Movie S1. Sequence of infection for a disease with low
infectivity P* = 0.3, showing that disease spreading is

quickly localized. This simulation is without recovery.

Movie S2. Sequence of infection for a disease with
intermediate infectivity P* = 0.6, showing that the
disease spreads in a spatially heterogeneous, ramified
pattern, leading to the formation of discrete clusters of
bypassed individuals who remain uninfected. Infected
individuals are shown in dark blue, uninfected suscepti-
ble individuals are shown in white. This simulation is
without recovery.

Movie S3. Sequence of infection for a disease with
higher infectivity P* = 0.7, showing that the disease
spreads in a more compact pattern, with a smoother
leading edge, leading to the formation of fewer and
smaller clusters of bypassed individuals. Infected indi-
viduals are shown in dark blue, uninfected susceptible
individuals are shown in white. This simulation is
without recovery.

Movie S4. Sequence of infection for a disease with
intermediate infectivity P* = 0.6, showing that recovery
causes disease spreading to be quickly localized. Infected
individuals are shown in dark blue, recovered individuals
are shown in light green, uninfected susceptible individ-
uals are shown in white. This simulation is with 7, = 4.

Movie S5. Sequence of infection for a disease with
higher infectivity P* = 0.7, showing that the disease
spreads continually, but recovery causes the disease to
spread in a spatially heterogeneous, ramified pattern,
leading to the formation of discrete clusters of bypassed
individuals who remain uninfected. Infected individu-
als are shown in dark blue, recovered individuals are
shown in light green, uninfected susceptible individuals
are shown in white. This simulation is with 7. = 4.




