Supplementary Information

Applications of Organic Nanofluid

This section of the manuscript discusses on the various industrial and commercial applications of organic nanofluids.

Table 1: Applications available in various literatures

Reference	Application	Organic Na	nofluid	Key Results
Yu et al. [83]	Automotive	ZnO na	noparticles	1. High Boiling Point was found
	Industry	dispersed in Ethylene Glycol/Water base		due to which the authors have
				suggested smaller engines as
		fluid		compared to the conventional
				large sized engines.
				2. ZnO improved the
				thermophysical properties of the
				nanofluid more than 50/50
				Glycol/Water based nanofluid.
Marquis and	Automotive	Carbon	Nanotube	1. High thermal conductivity,
Chibante et al.	Industry	(CNT)	based	improvement of engine's life,
[84]		nanofluids		high chemical stability, less
				agglomeration and better cooling
				were reported.
				2. The authors concluded that
				CNT based nanofluids will
				perform better than glycol or
				water based nanofluids.
Basha and	Automotive	Carbon	Nanotube	1. The carbon nanotubes were
Anand er al.	Industry	(CNT)	based	charged with diesel fuel and the
[85]		nanofluids		engine characteristics were
				studied.
				2. The Break Thermal Efficiency
				(BTE) increased by 7%, area to
				volume ratio was enhanced and

			better combustion were observed due to improved burning efficiency of the fuel.
Srinivas et al. [86]	Automotive Industry	Carboxylate additive with Carbon Nanotube (CNT) based	e thermophysical properties were
		nanofluids	as compared to Cu, Ag and Fe nanoparticles.
Chougule and	Automotive	Carbon Nanotube	e 1. Improvement of the coefficient
Sahu et al. [87]	Industry	(CNT) based	d of thermal convection was
		nanofluids	observed.
			2. Better Cooling by the
			automotive radiators.
Ahmadi et al.	Automotive	Oil-based Carbon	The thermal conductivity and
[88]	Industry	Nanotube (CNT) flash point of the resulting
		nanofluid	lubricant improved by 13.2% and
			6.7% respectively.
Huang et al.	Organic	Graphene and Carbon	1. Increment of the output power,
[89]	Rankine Cycles	Nanotube based	l thermal efficiency, and exergy
		nanofluids	efficiency to around 96.92 kW,
			14.13% and 64.04%.
			2. Increase in the net output
			power was found to be around
			3.84 KW.
Refiei et al. [90]	Organic	MWCNT/oil	Environmental impact was
	Rankine Cycles	nanofluid	positive with lower emissions and
	coupled with		the operation cost was also
	Solar		reduced to around 0.077 €/kWh.
	Concentrators		The thermal efficiency of the
			cycle was increased to around
			18.9%.

Loni et al. [91]	Organic	Ethanol and Methanol	1. The turbine inlet temperature
	Rankine Cycles	additives with R11,	was studied with different
	coupled with	R113, R114b and	nanofluids and at different
	Solar	R601 based	volume fractions. It was found
	Concentrators	nanofluids	that the thermal efficiency
			increased for ethanol and
			methanol based nanofluids more
			than R11.
			2. The turbine inlet temperature
			demonstrated a gradual increase
			in magnitude with a simultaneous
			increase in the thermal efficiency
			of the solar collectors.
Nelson et al.	Coolant Loops	Graphite nanoparticles	The specific heat, thermal
[92]	in Electrical	charged in	diffusivity, convective heat
	Power Stations	Polyalphaolefin based	transfer and viscosity was found
		nanofluids	to increase by 50%, 4 times, 10%
			and 10 times respectively leading
			to enhanced cooling.
Li et al. [93]	Electronics	Carbon-acetone	1. Micro-channel heat exchangers
	Cooling	nanofluid	which are often used for cooling
			electronics have been investigated
			here.
			2. The heat transfer rate was
			increased by 73%.
Kulkarni et al.	Building heating	Ethylene	1. It was found that the overall
[94]	and cooling	Glycol/Water based	Coefficient of Performance of the
		nanofluid	HVAC system of a building
			increased with a reduction in the
			compressor work. Due to
			reduction in the compressor work,

			the energy cost was also reduced
			significantly.
			2. The authors estimated a
			decrease in the size of the HVAC
			equipments upon using nanofluid.
He et al. [95]	Thermal Energy	Carbon nanoparticle	1. Thermal conductivity of the
	Storage	based nanofluid	Phase Change Material (PCM)
			was increased by 176.26%,
			47.4% and 44.01% upon addition
			of graphene nanoplatelets
			(GNPs), multi-walled carbon
			nanotubes (MWCNTs) and nano-
			graphite (NG).
			2. Phase change temperature
			range was shortened leading to
			higher latent heat capacities.
Rahman et al.	Solar powered	SWCNT/R-407c	1. The thermal conductivity of the
2019 [96]	air conditioning		nanofluid increased by 15.6%
	system		compared to the base refrigerant -
			R-407c. As a result, the cooling
			load was reduced by 31.5%.
			2. Additionally, as the compressor
			work reduced by 34%, the COP
			of the system therefore increased