
   

Supplementary Material 

1 Supplementary Figures and Tables 

Supplementary Table 1 A summary of simulations. 

Systems Box size No. of atoms MD Simulation length 
(ns) 

PAC1null ECD - PACAP 72×72×72 34499 1000×5 replicas 
PAC1null ECD - VIP 72×72×72 34198 1000×5 replicas 
PAC1s ECD - PACAP 72×72×72 34246 1000×5 replicas 
PAC1s ECD - VIP 72×72×72 34417 1000×5 replicas 
VPAC1 ECD - PACAP 72×72×72 34276 1000×5 replicas 
VPAC1 ECD - VIP 72×72×72 34392 1000×5 replicas 
VPAC2 ECD - PACAP 72×72×72 34296 1000×5 replicas 
VPAC2 ECD - VIP 72×72×72 34477 1000×5 replicas 
 

PAC1null (full length) 95×95×127 104443 ref[1] 
PAC1s (full length) 94×94×131 107651 1000×4 replicas 
VPAC1 (full length) 94×94×137 114041 1000×4 replicas 
VPAC2 (full length) 94×94×141 117473 1000×4 replicas 
    
PAC1 7TM – PACAP1-13 86×86×96 66036 1000×2 replicas 
PAC1null - PACAP 90×90×132 97564 3,000 a 
PAC1null - ΔPACAP  
(deletion of PACAP) 90×90×136 102408 201, 205 

PAC1null - PACAP6-38 90×90×133 100044 400, 600 a 
PAC1null - PACAP mutation 
(G4A, I5V, S9N, S11T, Y13L) 90×90×130 97243 102, 103 

GCGR - ligand complex (5YQZ) 90×90×145 110106 100 
GLP-1 - ligand complex (5VAI) 90×90×139 104711 105 

a Combination of conventional MD and adaptive tempering simulations.  
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Supplementary Table 2 Templates used in homology modeling and sequence identities. 

Receptor UniProt ID ECD template TMD template TMD sequence identity with 
GCGR PAC1 

VPAC1 P32241-1 VPAC2 
(PDBID: 2X57) 

GCGR  
(PDBID: 4L6R) 

42% 60% 

VPAC2 P41587-1 VPAC2  
(PDBID: 2X57) 

GCGR  
(PDBID: 4L6R) 

43% 61% 

PAC1a P41586-1 PAC1  
(PDBID: 3N94) 

GCGR  
(PDBID: 4L6R) 

41% - 

a used in our previous study for PAC1R (Liao, C., et al., Scientific Reports, 2017. 7(1): p. 5427).  

 

Supplementary Table 3 Transition time range of first and second shortest pathways. 

PAC1null a #1-#2 b #1-#3 #1-#4 #2-#3 #2-#4 #3-#4 
time (μs) 27~44 23~40 412~630 21~44 650~764 284~1010 
       
PAC1s #1-#2 #1-#3 #1-#4 #2-#3 #2-#4 #3-#4 
time (μs) 44~77 150~200 21~82 151~155 74~140 162~366        

VPAC1 #1-#2 #1-#3 #1-#4 #2-#3 #2-#4 #3-#4 
time (μs) 333~500 450~550 43~70 123~505 284~577 469~488        

VPAC2 #1-#2 #1-#3 #1-#4 #2-#3 #2-#4 #3-#4 
time (μs) 0.7~0.8 61~78 26~30 14~18 24~26 73~82 

a from our recent study (Liao, C., et al., Scientific Reports, 2017. 7(1): p. 5427). b stable states four microsecond MD 
simulations (#1~#4) in consistent with Supplementary Figure M7. 

 



 3 

 

 
Supplementary Figure 1. Side views of initial models differing in ECD orientations by rotating the 
backbone dihedrals in the linker. Replicas #1, #2, #3, and #4 are colored in blue, green, red, and orange 
colors respectively, same color scheme as in Supplementary Figs 5 and 6. 

 
Supplementary Figure 2. Initial structures of PACAP/VIP – ECD for PAC1null, PAC1s, VPAC1 and 
VPAC2 systems. ECD from different receptors are shown in different colors; PACAP is in yellow and 
VIP is in white. The peptide was placed ~1 nm away from the ECD.  
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Supplementary Figure 3. Demonstration of temperature evolution in time series in our adaptive 
tempering simulation. 
 

 
Supplementary Figure 4. Free energy maps based on conformation density of the ECD orientation 
(θ) against ECD-7TM center-of-mass (COM) distance from four microsecond MD simulations 
(#1~#4), in which the low energy regions correspond to the stable conformational states in Fig 1 are 
circled with the same color scheme. 
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Supplementary Figure 5. Conformations sampled in our simulations that resemble the crystal or cyro-
EM structures of class B GPCR (with PDBID in brackets) with respect to ECD orientation, dECD-ECL1, 
and dECD-ECL3. PAC1null receptor is from our recent study [1].  
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Supplementary Figure 6. Time evolution of Cα RMSDs of ECD, 7TM, and the entire protein. RMSDs 
were computed by alpha carbon alignments on initial structures. Each reaches a relatively stable 
conformation. 

  
Supplementary Figure 7. Representatives for PAC1s, VPAC1 and VPAC2 superposed with GCGR 
(PDBID: 5EE7). Bottom: RMSDs with standard errors computed by 7TM alignments on series of class 
B GPCR structures: GCGR, CRF1, CLP-1, PAC1, and CLR structures (names followed by PDBIDs). 
The last four columns (highlight in light orange) are proteins structures in active states. 
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Supplementary Figure 8. Water density around ECD “swing”, “open” and “closed” conformations 
with section views indicating the accessibility of PACAP/VIP to the orthostatic pocket in PAC1 and 
VPAC1/2. The ECD “open” and “swing” states exhibit larger water regions near the upper cavity, 
while the “closed” conformations which largely cover the orthostatic pocket with ECD have less water 
filled region. The open areas of the orthostatic site in ECD open and swing conformations have 
suggested that when a potential ligand (in green) binds to the ECD, it is able to dock in the orthostatic 
pocket along with ECD motions, which further open TM6 with enlarged water hump at the cellular 
side readily for G protein binding. In general, conformation ensemble and transitions in PAC1null, 
PAC1s, VPAC1, and VPAC2 have displayed unique features regarding ECD motions, ligand binding, 
and access to the orthostatic pocket, which further affect the fine-tune of neuropeptide-induced 
signaling. 
 



  Supplementary Material 

 8 

  
Supplementary Figure 9. Seqences of PAC1null ECD, VPAC1/2 ECD, and PACAP/VIP in this study. 
The 21 amino acids (res. 89-109) in PAC1null are highlighted in grey. Sequences highlighted 
correspond to the same color scheme in Fig 2B of the main manuscript. 
 

 
Supplementary Figure 10. Per-residue free energy decomposition of res. 13-26 of PACAP/VIP in 
PAC1null, PAC1s, VPAC1, and VPAC2 binding. 
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Supplementary Figure 11. (A) Initial and final structural alignments of glucagon receptor (GCGR, 
PDBID: 5YQZ) and GLR-1 receptor (PDBID: 5VAI) in 100-ns MD. (B) Bottom view of superposed 
final ligand-bound PAC1R, GCGR, GLR-1 receptor structures. Ca distance of L251-L351(PAC1R), 
L249-L347(GCGR), L251-L349(GLP-1R) representing TM6-TM3 distance in Supplementary Material Fig 
11 are shown in red dash lines.  
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Supplementary Figure 12. (A) Time evolution of TM3-TM6 distance (by Ca distance between L251 
and L351) in PACAP and PACAP6-38 bound PAC1null simulations. Adaptive tempering is in light 
orange strip background. (B) Time evolution of TM3-TM6 distance in Δpacap (deletion of PACAP) 
and PACAP mutant (G4A, I5V, S9N, S11T, Y13L) in PAC1null simulations. (C) Time evolution of 
TM3-TM6 distance in ligand-bound GCGR and GLP-1 receptor simulations.  



   

2 Construction, validation, and analyses of Markov state model 

Markov state models of molecular kinetics (MSMs) were applied on the collection of ligand-free MD 
trajectories, in which we could identify the transition pathways and estimate the long-time statistical 
dynamics between the conformational states of interest. We used the MSMBuilder3.8.0 program[2, 3] 
to construct the transition matrices of MSM and calculated the transition timescale based on the 
transition-path theory.[4-7] A general scheme is displayed below. 

 
Supplementary Figure M1. General scheme for MSM constructions in present study. 
(1) Trajectories preparation. We first prepared the trajectory dataset with atoms indices by saving the 
Cα coordinates of a GPCR protein excluding the first and last five terminal residues which are usually 
dynamic. We first tried to build a MSM on full trajectories (Test1 in Supplementary Fig M1), it turns 
out data population in use were as low as 50% since finals states take up large population in full 
trajectories. Therefore, we trimmed our trajectories based on RMSD plots (Supplementary Fig M2) 
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and visually checking the trimmed trajectories to make sure trajectories contain final conformation 
population and also pass the initial test. In general, we have 4,519~14,281 configurations.  

(2) Clustering. We grouped the conformation dataset into a set of clusters, called microstates, based on 
structural similarities. We used the k-centers algorithm[2] to group the dataset into 33~55 clusters by 
RMSD metric and make sure mean distance and maximum distance were not too large, within ~0.35 
Å and ~0.59 Å, respectively. 

 
Supplementary Figure M2. Time evolution of RMSDs of the entire protein. RMSDs were computed 
by Cα alignments on initial structures. The lines on top indicate where the data were trimmed for MSM 
construction. 
(3) A MSM construction. With the set of microstates discretization, a series of microstate transition 
matrices in the evolution of the observation interval or lag time at τ, 2τ, …, nτ, were constructed, on 
which the implied timescales and the Chapman-Kolmogorov test[8] were carried out to examine if a 
microstate transition matrix with the microstate discretization and a chosen lag time is Markovian.[5, 
8, 9] We used maximum likelihood estimation to build the transition matrices at series of lag times, in 
which increasing the lag time means that states can get larger and more coarse grained as the longer 
lag time the fewer states are kinetically relevant (kinetically reach each other on timescales faster than 
the lag time).[10] 

(4) Implied timescales scanning. The implied timescales as a function of the lag time are shown in 
Supplementary Fig M3. Plots with gaps between gradually level out, from which we give initial guess 
for lag time (marked as t’) that is Markovian. We constructed MSM with lag time = t’, from which we 
collected these microstates (labels) that include the final conformations to calculate the short pathways 
connecting these stable conformational states in a transition matrix. 

 
Supplementary Figure M3. Implied timescales as a function of the lag time. The macrostate partitions 
become robust along lag time series. 
(5) Shortest transition pathways. Using the transition-path theory (TPT),[4-7] we calculated the top 
five shortest pathways connecting these stable conformational states in a transition matrix, each with 
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the minimum transition net flux in a pathway, given lag time = t’. We collected two sets of microstates 
that are in the shortest and second shortest pathways to go through the Chapman-Kolmogorov test.  

(6) The Chapman-Kolmogorov test[5, 8] were applied on set of states that constituting the first and 
second shortest paths between stable conformational states as shown in Supplementary Fig M4.The 
detailed implementation of Chapman-Kolmogorov test was described in a specific chapter [11]. We 
tested if the lag time = t’ holds the test, i.e., the transition probabilities from MSM agree well with the 
probabilities in observed trajectory within statistical uncertainty at lag time = t’. If not, we go back to 
last step with a new lag time again. If yes, we build up a macrostates MSM with lag time = t’.  

 
Supplementary Figure M4. Groups of microstates that constitute the shortest and second shortest 
transition pathways between closed and open states were examined by Chapman-Kolmogorov test. The 
transition probabilities from MSM agree well with the probabilities in the observed trajectories within 
statistical uncertainty. 
(7) The eigenvalues of the transition matrix are given with lag time = t’, shown in Supplementary Fig 
M5. The division of macrostates were calculated from the eigenfunction structure using the Perron 
Cluster Cluster Analysis (PCCA) method.[12]While the macrostates number can be visually estimated 
by the number of the major gaps in the implied timescales, it is directly determined here by the number 
of eigenvalues that are close to 1.[12] 

 
Supplementary Figure M5. Eigenvalues of the transition matrix at lag time of 1.2, 1.68, 2.4 ns for 
PAC1s, VPAC1 and VPAC2 systems. Only the first sixteen data are shown. 
(8) We map the microstates division in the 3D orientation-distance variable space (Supplementary Fig 
M6) and extracted samples in transition paths displayed in Supplementary Fig M7. We obtained the 
time to travel from one set of states to the other by the lag time divided by the minimum transition net 
flux. The average transition time of the first two shortest pathways are listed in Supplementary Table 
3. 
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Supplementary Figure M6. Conformational state divisions in MSM in projection to ECD tilt angle 
(θ) and position by ECD-ECL1 (d1) and ECD-ECL3 (d2) center-of-mass distance for PAC1s, 
VPAC1/2R systems. (A) Divisions of microstates marked by different colors. (B) Divisions of 
macrostates marked in different colors at lag time of 1.2, 1.68, 2.4 ns. (C) Microstates containing final 
conformational states (marked as #1, #2, #3, #4) in each system. 
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Supplementary Figure M7. Transition pathways of PAC1s, PAC1null, VPAC1 and VPAC2. 
Intermediate states are in yellow carton. The transition pathway of PAC1null was remade from our 
recent study [1]. 
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