
Supplementary Material S2: Catch Model Fitting and Performance 

 
Described below are the seven leatherback turtle, swordfish, and blue shark correlative catch 

models used to define this study’s eight operating models (Table 1). A model selection 

process was used for each model to determine a parsimonious set of covariates for each 

model. Static covariates (latitude, longitude, day-of-year, depth standard deviation) were 

deliberately included in only some models to explore structural differences, but all models 

included dynamic environmental covariates. These covariates included ocean variables from 

a data-assimilative configuration of the Regional Ocean Modelling System (ROMS), which 

were matched to each DGN set in the observer data based on each set’s date and location. A 

broad set of ocean variables were examined for swordfish and blue sharks, prioritising sea-

surface temperature (SST), isothermal layer depth (ILD), and finite-time Lyapunov exponent 

(FTLE), as they are known drivers of swordfish distribution (Brodie et al. 2018; Scales et al. 

2018). Collinearity among included covariates was evaluated, and all covariates had variance 

inflation factors < 3 (Zuur et al. 2010). A reduced set of covariates was used for the 

leatherback turtle model, due to the small number of observed bycatch events. This covariate 

set was selected by minimizing the out-of-bag (OOB) error rate for models with 3-6 

covariates from the available covariates. SST and SSH were prioritized, having been 

previously identified as influential for leatherback turtles (Eguchi et al. 2017). 

 

Model performance for swordfish and blue shark models was measured using k-fold cross 

validation (k = 10). This process fitted each model to a majority of training data, and 

measured model predictive power by comparing observed values of a withheld minority of 

testing data against their predicted values from the trained model (using RMSE and Pearson 

correlation). This was repeated ‘k’ times using different subsets (or folds) of training and 

testing data, and the mean RMSE and correlation of these subsets represented model 

predictive performance. For the leatherback turtle random forest model, performance was 

measured using a cross-validated (i.e. out-of-bag, OOB) confusion matrix, returned by the 

‘print’ function in the ‘randomForest’ R package (Liaw and Wiener 2002). AUC was not 

used, because it was unreliable given that most predicted values were of the ‘no catch’ class. 

Absolute model performance is less important in a closed-loop simulation, because the results 

are conditional on the operating model being true. However, it was nonetheless useful to 

verify that the models performed well, as this meant our MSE evaluated a plausible system.  

 

LB Catch Models 

 

Our MSE explored four possible distributions of leatherback turtles: LB1, LB2, LB1seas, and 

LB2scal (Table 1). Maps of these distributions are illustrated in Fig. S2.1. 

 

The LB1 random forest catch model had the form: 

𝐶𝑃𝑈𝐸 =  𝑆𝑆𝑇 +  𝑆𝑆𝑇𝑠𝑑 + 𝑆𝑆𝐻 + 𝐿𝑜𝑛 + 𝐿𝑎𝑡 + 𝐻𝑠𝑒𝑡 

 

The LB2 model had the form: 

𝐶𝑃𝑈𝐸 =  𝑆𝑆𝑇 +  𝑆𝑆𝑇𝑠𝑑 + 𝑆𝑆𝐻 + 𝐶𝑢𝑟𝑙 + 𝐻𝑠𝑒𝑡 

 



Where CPUE is the probability of catching one leatherback turtle per set. Additional 

covariates and their sources are detailed in Table S2.1. These models were fit using the 

‘randomForest’ R package. We specified 700 trees, which was deemed sufficient by testing 

different tree numbers and examining OOB results. We used default values for the number of 

covariates randomly sampled as candidates at each split (‘mtry’), and for the minimum size 

of terminal nodes (‘nodesize’). Fitted responses for LB1 and LB2 are illustrated in Fig. S2.2, 

and performance results presented in Table S2.2. 

 

Classification trees are sensitive to imbalance between classes (here, no catch = 0 and catch = 

1), so we used a down-sampling procedure to address this imbalance. The majority class was 

down-sampled when training the random forest, such that each tree used a stratified bootstrap 

sample of the data with equal numbers of majority (0s) and minority (1s) class observations 

(Stock et al. 2019). Given the rarity of bycatch events, we set the sample size equal to the 

number of minority class observations. We found that another approach to address class 

imbalance, the synthetic minority over-sampling technique (Chawla et al. 2002; Stock et al. 

2019) over-fit the data. Down-sampling increased model skill (43% error in LB1 identifying 

catches in down-sampled model, compared to 100% error with standard random forest), 

although at the expense of accuracy (down-sampled LB1 model also misclassified 27% of no 

catches as catches; Table S2.2). 

 

Like other authors (Stock et al. 2018), we found that class imbalance-corrected random 

forests overpredicted bycatch rates, and these required rescaling. As stated in the main article, 

we also wanted to rescale catch rate to an inflated level suitable for our MSE simulation. We 

rescaled using Elkan’s general updating approach for probability estimates for machine 

learning methods (Elkan 2001). Rescaling of values from a classification tree can be done 

when the base rate (i.e. occurrence of a class; in this case a turtle catch) used to fit the model 

differs from the population to be used for prediction. According to Equation 1 in Dankowski 

and Ziegler (2016), rescaling was done by: 

𝑃′(𝑦) =
𝑏′(𝑦 − 𝑏𝑃(𝑦))

𝑏 + 𝑏′𝑃(𝑦) − 𝑏𝑃(𝑦) − 𝑏𝑏′
 

 

Where P(y) are the probabilities of a turtle catch (y = 1) in the California Current predicted 

using the down-sampled random forest (i.e. the CPUE specified above), b is the ‘base rate’ of 

turtle occurrence in the down-sampled data (b = 0.5), and P’(y) are the updated probabilities 

given the desired base rate of turtle occurrence b’. We found the desired b’ with an iterative 

process, by altering b’ until the predicted number of presences for the observer data set 

achieved the desired catch rate (b’ = 0.1). For both LB1 and LB2, this increased the actual 

catch rate from 23 turtle bycatch events to ~380 bycatch events (in the observed ~5700 sets). 

 

The LB1seas turtle catch model was identical to LB1 in all aspects, but was multiplied by an 

additional factor to define each day’s catch rate. The factor was a logistic function, defining 

the proportion of the LB1 catch rate remaining at a given day of the year (Fig. S2.3). The 

logistic function was parametrized to have a sharp decline in catch rate, with essentially zero 

catch rate by end of November. The LB2scal turtle catch model was fitted as LB2, but used a 

different form of rescaling than the general updating approach described above. Rescaling of 



the catch rate was done by multiplying the down-sampled catch rate by the ratio of 

desired:actual bycatch events. The desired value was specified to give, as for the other 

models, a prediction of ~380 bycatch events (in the observed ~5700 sets). Because LB2 and 

LB2scal used the same catch model, the habitat preferences of turtles represented by these 

models were largely identical, with the only difference being that the LB2 model made an 

increased distinction between ‘good’ and ‘bad’ habitat (Fig. S2.1). 

 

 

Table S2.1. Description and sources of covariates used in the seven catch models. All 

dynamic variables were resolved at a daily time-step. ‘Range’ is the minimum and maximum 

values in the 1990-2000 observer data used to fit the models. 

Covariate Units Range Description and Source 
SST °C 11.8, 23.9 Sea-surface temperature. Sourced from ROMS. 

SSTsd °C 0.04, 1.45 The spatial standard deviation of sea-surface temperature. 

Calculated over a 0.7° square. The variation of SST can indicate 

thermal fronts. Derived from ROMS 

ILD m 1.4, 109.4 Isothermal layer depth, calculated as the depth corresponding to a 

0.5°C temperature difference relative to sea surface temperature. 

ILD is an index of water column structure, specifically the depth of 

surface mixing. Derived from ROMS 

SSH m -0.04, 0.42 Sea-surface height. Sourced from ROMS 

EKE m2 s-2 -13.9, -1.4 Eddy kinetic energy. This was calculated as the sum of eastward 

surface current velocity squared and northward surface current 

velocity squared, divided by two. EKE indicates the presence and 

intensity of eddies. Derived from ROMS 

FTLE d-1 -0.28, 0 Finite-time Lyapunov exponent. FTLE is a Lagrangian coherent 

structure that measures the maximum separation of close-by 

particles of a time-dependent flow field after a fixed, finite particle 

advection time (Watson et al. 2018), and indicates fronts. Derived 

from ROMS 

Curl N m-2 -1.58 × 10-6, 

2.85 × 10-6 

Wind stress curl. Sourced from ROMS. 

Zsd m 10.3, 1334 The standard deviation of ocean bottom depth at each set 

(rugosity), calculated over a 0.3˚ x 0.3˚ square. Derived from 

ETOPO1 (interpolated to 0.1°), obtained from 

https://www.ngdc.noaa.gov/mgg/global/global.html 

Lat, Lon degrees 30.17, 46.43 

-129.15, -117.25 

The latitude and longitude of each set. Taken as the coordinates 

specified by the observer 

Time years 0, 10.4 Continuous time (decimal years) 

DOY day 1, 366 Day of calendar year 

Distance km 3.4, 453 Distance of each set from the coast. Calculated as the haversine 

distance using the location specified by the observer 

Hset h 1, 20 The duration of each DGN set. This is specified in the model 

prediction to estimate mean catch for a given set duration. This was 

evaluated as an offset term, but the response was non-linear so it 

was included as a covariate 

Vessel  132 vessels A vessel identifier. Used in the GAMM as a random effect to 

account for the dependency in catch rates by the same vessel 



 

Fig. S2.1. Predicted catch by the four leatherback turtle catch models (Table 1), for an 

example date (A-D) and as the mean of all November days in 1991-2000 (E-H, mean in 

parentheses). Color is the mean probability of catching one turtle per 12h set. Note that LB1 

and LB1seas have an identical spatial distribution, but the LB1seas catch rate declines due to 

a forced migration (Fig. S2.3). Note LB2 and LB2scal have near identical catch distributions, 

but with less difference between high and low catch rate areas for LB2scal.  



 

Fig. S2.2. Fitted response curves for the LB1 and LB2 catch models. Increasing values 

indicate an increased probability of a bycatch event. 

  



Table S2.2. Cross-validated confusion matrix of the prediction (based on out-of-bag OOB 

data) for the down-sampled leatherback turtle catch random forest models (LB1 and LB2). 

The class-error represents prediction error; e.g. for LB1 there was 43% error predicting an 

OOB catch (10 of the 23 observed catch events were incorrectly predicted to be no catch). 

The OOB estimates of total model error rate were LB1 = 26.7% and LB2 = 24.5%. 

LB1 
Predicted No 

Catch 

Predicted 

Catch 
Class error 

Observed No 

Catch 
4221 1530 0.27 

Observed 

Catch 
10 13 0.43 

LB2 
Predicted No 

Catch 

Predicted 

Catch 
Class error 

Observed No 

Catch 
4351 1400 0.24 

Observed 

Catch 
14 9 0.61 

 

 

 

 

 

Fig. S2.3. The logistic ‘migration’ function used to reduce the LB1 catch rates, reducing the 

bycatch risk to ~0 by end of November. The vertical dotted lines indicate two dates: 15th Oct. 

and 31st Nov. DOY is day-of-year. 

  



SF Catch Models 

 

Our MSE explored two possible distributions of swordfish in our MSE, as operating models: 

SF1 and SF2 (Table 1). Example maps of these distributions are illustrated in Fig. S2.4. 

 

The SF1 BRT swordfish catch model had the form: 

𝐶𝑃𝑈𝐸 = 𝑆𝑆𝑇 + 𝑆𝑆𝑇𝑠𝑑 + 𝐼𝐿𝐷 + 𝑆𝑆𝐻 + 𝐸𝐾𝐸 + 𝑍𝑠𝑑 + 𝐹𝑇𝐿𝐸 + 𝐷𝑖𝑠𝑡 + 𝐿𝑎𝑡 + 𝐻𝑠𝑒𝑡 

 

The SF2 GAMM catch model had the form: 

𝐶𝑃𝑈𝐸 = 𝑠(𝑆𝑆𝑇) + 𝑠(𝑆𝑆𝑇𝑠𝑑) + 𝑠(𝐼𝐿𝐷) + 𝑠(𝑆𝑆𝐻) + 𝑠(𝐸𝐾𝐸) + 𝑠(𝑍𝑠𝑑) + 𝑠(𝐹𝑇𝐿𝐸)

+ 𝑡𝑒𝑠𝑤,𝑐𝑟(𝐿𝑜𝑛, 𝐿𝑎𝑡, 𝑇𝑖𝑚𝑒) + 𝑠𝑐𝑐(𝐷𝑂𝑌) + 𝑠(𝐻𝑠𝑒𝑡) + 𝑠𝑟𝑒(𝑉𝑒𝑠𝑠𝑒𝑙) 

 

CPUE is the number of swordfish per set; additional covariates and their sources are detailed 

in Table S2.1. For the GAMM models, s indicates a thin plate regression spline, sre indicates 

a smooth representing an i.i.d random effect, scc indicates a cyclic cubic regression spline (to 

model seasonality), and tesw,cr indicates a tensor product smooth with soap film smoother for 

the spatial covariates and a cubic regression spline for time. 

 

As in Smith et al. (2020), the BRT was fitted to observed swordfish catches using a learning 

rate of 0.01, a tree complexity of 3, and a bag fraction of 0.6 (Elith et al. 2008), using the 

function ‘gbm.step’ in the ‘dismo’ R package (Hijmans et al. 2017). Random effects cannot 

be added to this form of BRT, but we examined the relationship between BRT residuals and 

Vessel to identify an effect on CPUE (Buston and Elith 2011). There was a residual effect, as 

measured with a GLRT test (section 3.5; Wood 2017), but we consider this minor as the 

interquartile range of the residuals for most vessels encompassed zero. 

 

The GAMM was structurally quite different to the BRT, by modelling space and continuous 

time. The GAMM was fitted using the ‘mgcv’ R package (Wood 2011). We used soap film 

smoother to allow more control of catches at the boundary (Wood 2017), with swordfish 

catches shrinking to zero at the EEZ (using the ‘sw’ smoother). This was done to help reduce 

movement of vessels into areas far offshore that were predicted to be good fishing habitat, but 

were uncertain and potentially misidentified. We specified the western soap film boundary to 

be the EEZ, the northern and southern boundaries to be slightly beyond the Washington 

border (where fishing is not permitted) and slightly beyond the EEZ respectively, and the 

eastern boundary to be slightly inland (slightly inland to not unrealistically shrink catches at 

the coast). Knot locations for the soap-film smoother were selected manually using the 

‘locator’ function (Wood 2017), and spread approximately evenly throughout the fishable 

domain (recommended for spatially unbalanced data; Thorson 2019). The boundary and 

knots used for the soap film smoother are shown in Fig. S2.5. We used 91 knots, which 

balanced flexible fit and computational feasibility. 

 

Fitted responses for SF1 and SF2 are illustrated in Fig. S2.6 and S2.7, and model 

performance is reported in Table S2.3. 

 

 

 



BS Catch Models 

 

Our MSE explored one distribution of blue sharks in our MSE: BS1 (Table 1). This Poisson 

BRT had the form: 

𝐶𝑃𝑈𝐸 = 𝑆𝑆𝑇 + 𝑆𝑆𝑇𝑠𝑑 + 𝐼𝐿𝐷 + 𝑆𝑆𝐻 + 𝐸𝐾𝐸 + 𝐹𝑇𝐿𝐸 + 𝐶𝑢𝑟𝑙 + 𝐻𝑠𝑒𝑡 

 

CPUE is the number of blue sharks per set; additional covariates and their sources are 

detailed in Table S2.1. This BRT was fitted as per the swordfish BRT. An example map of 

this distribution is illustrated in Fig. S2.8, the fitted responses are illustrated in Fig. S2.9, and 

model performance is reported in Table S2.4. 

 

 

 

 

Fig. S2.4. Predicted catch by the two swordfish catch models (Table 1), for an example date 

(A-B) and as the mean of all November days in 1991-2000 (C-D, mean in parentheses). Color 

is the predicted mean number of swordfish per 12h set. 



 

 

Fig. S2.5. The boundary (red line) and knots (dots) used for the soap film smoother. Also 

shown is an example prediction of swordfish catch from this model (color; 20th Dec. 1997), 

and a kernel density contour enclosing 99% of observed fishing effort (1990-2000; dashed 

line). 

 

 

  



 

 

Fig. S2.6. Fitted responses in the swordfish BRT (SF1). See Table S2.3 for model 

performance. 

 

  



 

 

Fig. S2.7. Fitted smoothers for the swordfish spatial-temporal GAMM (SF2), with twice the 

standard error (grey area). The period shaded red for DOY was not part of the simulated 

fishing season. Panel j) illustrates the fitted catch for a subset of dates from the space-time 

smoother (yellow = high, red = low). See Table S2.3 for model performance. 

 



Table S2.3. Results from k-folds cross-validation of the swordfish catch models. We fitted 

each model to a training majority of data (‘train’), and tested the predictive power of a model 

using the held back minority of data (‘test’). The mean root-mean-square-error (RMSE) and 

Pearson correlation (Cor) of the predicted and observed test data represents predictive power 

(better model highlighted grey). The RMSE of the train data, and the explained deviance of 

the model fitted to train data, represent model goodness-of-fit (best model in bold). 

Metric SF1 (BRT) SF2 (GAMM) 

RMSE test mean 2.496 2.449 

RMSE test sd 0.156 0.173 

Cor. test mean 0.483 0.513 

Cor. test sd 0.051 0.049 

RMSE train mean 1.993 2.210 

RMSE train sd 0.035 0.024 

Expl. Dev. % mean 46.36 42.43 

Expl. Dev. % sd 1.15 0.84 

 

 

 

 

 

 

Fig. S2.8. Predicted catch by the blue shark catch model (Table 1), for an example date (A) 

and as the mean of all November days in 1991-2000 (B, mean in parentheses). Color is the 

predicted mean number of blue sharks per 12h set. 

 

 

  



 

Fig. S2.9. Fitted responses in the blue shark BRT (BS1). See Table S2.4 for model 

performance. 

 

Table S2.4. Results from k-folds cross-validation of the blue shark catch models. The mean 

root-mean-square-error (RMSE) and Pearson correlation (Cor) of the predicted and observed 

test data represents predictive power. The RMSE of the train data, and the explained 

deviance of the model fitted to train data, represent model goodness-of-fit. 

Metric BS1 (BRT) 

RMSE test mean 5.924 

RMSE test sd 0.689 

Cor. test mean 0.313 

Cor. test sd 0.040 

RMSE train mean 4.740 

RMSE train sd 0.104 

Expl. Dev. % mean 40.21 

Expl. Dev. % sd 2.18 
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