Model parameters

Parameter	Value	Description
c_1	0.185	ER/cytosolic volume ratio
v_1	$6.0 \ {\rm s}^{-1}$	Maximum Ca^{2+} channel flux
d_1	$0.13 \ \mu M$	Dissociation constant for IP_3
d_5	$0.082 \ \mu M$	Ca^{2+} activation constant
v_2	$0.11 \ {\rm s}^{-1}$	Ca^{2+} leak constant
v_3	$2.2 \ \mu M/s$	Maximum Ca ²⁺ uptake
k_1	$1.0 \ {\rm s}^{-1}$	<u>Rate constant of Ca^{2+} extrusion</u>
v_5	$0.01~\mu M/s$	Rate of Ca^{2+} leak across plasma membrane
v_6	$0.035~\mu M/s$	Maximal rate of activation dependent Ca^{2+} influx
k_2	$1.0 \ \mu M$	Half-saturation constant for
		agonist-dependent Ca ²⁺ entry
k_3	$0.1 \ \mu M$	Activation constant for Ca^{2+} -
		pump
v_4	$0.25~\mu M/s$	Maximal rate of IP_3 production
k_4	$1.1 \ \mu M$	Dissociation constant for Ca^{2+}
		stimulation of IP_3 production
v_g	$0.062~\mu M/s$	Rate of IP_3 production through
_		glutamate
k_g	$0.78~\mu M/s$	Dissociation constant for gluta-
		mate stimulation of IP_3 produc-
<u> </u>		tion
δ	5.0	rate of Ca^{2+} equilibration in ER
α	0.8	
$ au_r$	7.143 s	Rate constant for loss of IP_3
$IP3_{inf}$	$0.16 \ \mu M$	Steady-state IP_3
d_2	$1.049 \ \mu M$	Dissociation constant for Ca^{2+}
,	0.049	inhibition
d_3	$0.943 \ \mu M$	Receptor dissociation constant
	0.14 M -1	for IP_3
a_2	$0.14 \ \mu Ms^{-1}$	Ca ⁻ inhibition constant
$[Glu]_{amb}$	$0.00 \ \mu M$	amplent glutamate concentration
$ au_{glu}$	$0.1 \ \mu M/s$	rate constant for synaptic glutamate uptake
D_{IP3}	$10 \ \mu m^{-}/s$	$\frac{\text{diffusion coefficient for cytoplasmic IP}_3}{\frac{\text{diffusion of finite for extendermin Or}^2 + 1}$
D_{Ca}	$10 \ \mu m^{-}/s$	diffusion coefficient for cytoplasmic Ca ⁻⁺
D_{Glu}	$0.02 \ \mu m^2/s$	diffusion coefficient for extracellular glutamate
o_x	0.275 (single-	spatial scale
	$\begin{array}{c} \text{cell}; \\ \text{(a. stars sl}) \end{array} $	
m	(1100 WOLK)	rate of Poisson process for dutemate release
P_{syn}	$0.000-0.01 \ \Pi Z$ $97 \ \mu M$	instantanoous rise in glutamate release
А <i>т</i>	$21 \mu W$	dimensionlogg & minimal value of
T_{\min}	0.089	the AVE

Underlined entries are new or different from (Ullah et al, 2006). The few values that are different from (Ullah et al, 2006) were adjusted in order to provide the reasonable dynamics with the introduced treatment of $[Ca^{2+}]_{ER}$ as a variable in our model and the spatially extended layout. We had to adjust Ca^{2+} -dependent PLC δ IP₃ production rate, as well as Ca^{2+} extrusion and plasma membrane leakage to correct for areas with high SVR. New parameters dealt with quantal glutamate release as sensed by perisynaptic astrocyte processes. Here we had to choose parameters such that to obtain biophysically plausible model dynamics.

Diffusion coefficient for Ca²⁺ is taken as a lower-bound estimate in Allbritton et al (1992). Slow diffusion coefficient of IP₃ is based on (Dickinson et al, 2016). We also added new parameters, specifically, A, τ_{Glu} , and D_{Glu} . The latter was chosen as a small value to describe only minimal spillover from a release site and buffering by binding to transporters. The pair of parameters describing instantaneous glutamate release rate and slower decay could be varied, because it is hard to assess the actual transmitter concentration and decay time as sensed by astrocyte leaflets. Extracellular glutamate transients occurring due do quantal synaptic release as estimated by fluorescent glutamate sensor have decay timescale in close to 100 ms (Jensen et al, 2019), and this value was used for the simulations shown below. This led to local glutamate transients peaking at 1.2 μ M and decaying within 200 ms. We note that qualitatively similar Ca²⁺ signaling dynamics could be obtained with a shorter τ_{Glu} value, compensated by higher release rate A.

Numerical integration of the model differential equations is done in an explicit scheme (4th order Runge–Kutta method adopted for stochastic differential equations with a fixed timestep dt = 0.002 s) implemented in AGEOM–CUDA software (Postnov et al, 2012). Spatial grid step was $\delta x = 0.275 \,\mu\text{m/pixel}$ for single-cell templates and $\delta x = 0.55 \,\mu\text{m/pixel}$ for network templates (to speed-up simulations). For reproducibility, a reference implementation of spatial template generation and model simulation is available at https://zenodo.org/record/4552726#.YDAz1nUzZQ8 in form of Jupyter notebooks, Python and C code.

References

- Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5trisphosphate. Science 258(5089):1812–5, DOI 10.1126/science.1465619
- Dickinson GD, Ellefsen KL, Dawson SP, Pearson JE, Parker I (2016) Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action. Science Signaling 9:ra108, DOI 10.1126/scisignal.aag1625
- Jensen TP, Zheng K, Cole N, Marvin JS, Looger LL, Rusakov DA (2019) Multiplex imaging relates quantal glutamate release to presynaptic ca. Nat Commun 10(1):1414, DOI 10.1038/s41467-019-09216-8
- Postnov DE, Postnov DD, Zhirin R (2012) The "AGEOM_CUDA" software for simulation of oscillatory and wave processes in two-dimensional media of arbitrary geometry on the basis of high-speed parallel computing on graphics processing unit technology CUDA. RF registration certificate #2012610085 from 10.01.2012. (in russian)
- Ullah G, Jung P, Cornell-Bell A (2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)trisphosphate regeneration. Cell Calcium 39(3):197 – 208, DOI http://dx.doi.org/10.1016/j.ceca.2005.10.009, URL http://www.sciencedirect.com/science/article/pii/S0143416005002083