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1 SUPPLEMENTARY DATA
Text S1: Neural Network

A neural network (NN) is a ML algorithm loosely based on the human brain (McCulloch and Pitts, 1943).
This algorithm is used for both classification and regression tasks. A simple NN is composed of three parts:
an input layer, a hidden layer, and an output layer. The input layer is the input to the model. The hidden
layer is composed of neurons (or nodes). Given an input X = {x1, x2, ..., xn} of size n, a neuron consists
of a weights vector W = {w1, w2, ..., wn} of size n and a bias value b. Figure S1 shows an example of a
neuron. The neuron uses the input and calculates an output y by the equation:

y = f((
n∑

i=1

wixi) + b) (S1)

where f is the activation function. Typically, f is a nonlinear function (i.e sigmoid, rectified linear units)
that adds non-linearity to the model. The output of the neuron, y, is then used as part of the input for the
next layer, the output layer. The output layer also consists of neurons, but the activation function (or lack
there of) is dependent on the model task. For regression models, there is typically no activation function.
The output layer can be one value or multiple values depending on the task. NNs are trained by optimizing
the weight values over numerous iterations to achieve accurate estimations by minimizing the output of a
loss function.

When all the neuron in a layer are connected to all neurons in the adjacent layers, the layer is fully-
connected. For one-dimensional neural networks, this is called a dense layer. A DNN is simply a NN with
multiple hidden layers of neurons. The number of hidden layers is referred to as the depth of the network.
Adding additional hidden layers typically increases model performance by allowing the model to extract
higher level abstract features from the input data. With each hidden layer acting as the input to subsequent
hidden layer, a hierarchy of abstract features and input data representations can be extracted during the
process of DNN model development.

Text S2: ES Analysis

To select the ES, we computed the correlation coefficient and root mean square error between the 60
synthetic true permeability and the corresponding 60 estimations from each of the 537 ensemble posterior,
for the different observation errors. Overall, s3 has the highest correlation coefficient and the lowest root
mean squared errors for all the errors (Figure S2). It implies that ES has the best estimation on s3, which is
consistent with the training results from DNN models. Also, we observe that the correlation and root mean
square error generally increases and decreases with observation error, respectively, with the converging or
turning point at around 0.05. Therefore, we chose results with relative error of 0.05 for the comparison
between DNN models and ES.

Text S3: ATS setup

Critically for simulations at time scales of over a few days, evapotranspiration (ET) is determined in ATS
for these problems using a modified Priestly-Taylor approximation based on that of the Precipitation-Runoff
Modeling System (PRMS Version 4) (Markstrom et al., 2015). This approach approximates a potential ET
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based on the Priestley-Taylor equation and a ground flux based on a lagged air temperature. This potential
sink is then limited if insufficient water is available within the near surface soil using the approach of the
Community Land Model (CLM version 4.5) (Oleson et al., 2013). This limiter is done in two stages: first,
a combined factor of water saturation and plant rooting fraction is used to distribute the evapotranspiration
flux to the soil, and second, a wilting-point based factor is used to limit fluxes from any given cell based on
the local mafic potential.

Prescribed precipitation is partitioned into rain and snow by the air temperature – if the mean daily air
temperature is below zero, precipitation is assumed to come as snow. Snow is reserved in a simple bucket
model, and snowmelt is reintroduced to the surface water system through a thawing-degree-days approach
as is done in PRMS (Markstrom et al., 2015).

To drive the ATS, meteorological data including precipitation as a source of water, air temperature,
incoming net radiation, and relative humidity are required by the Priestly-Taylor potential ET, and a
subsurface mesh including soil properties are required. ATS then predicts the ET, and solves water
conservation equations to determine liquid water pressure in all subsurface and surface grid cells (or
equivalently hydrologic head), and the flux of water on both subsurface faces (Darcy flux) and surface faces
(overland flow). Boundary conditions are given by no-flux on all subsurface boundaries (except the surface)
and a seepage face condition on all surface boundaries that allows discharge out of the domain but allows
no water to come onto the domain (as is expected of a headwater system). Initial conditions are given by
a spinup process in which the average annual summer precipitation rate was prescribed for 20,000 days
across the entirety of the surface, and discharge was monitored until a pseudo-steady-state was reached in
which discharge was matched by integrated precipitation. Observations in the code are used to integrate the
egress of water from the domain through the outlet of Rock Creek on the surface boundary alone, providing
discharge in Rock Creek as a function of time. An artificially high Manning’s coefficient of 1.5 is used to
simulate surface runoff at reduced computational cost. Sensitivity of discharge to Manning’s coefficient
was tested by varying Manning’s coefficient from 0.5 to 2.5, and the daily averaged discharge was found to
be nearly identical. This would likely not be true for hourly or faster precipitation forcing and/or discharge
measurements.

2 SUPPLEMENTARY TABLES AND FIGURES
2.1 Tables

Table S1. Hyperparameters varied for each model type. For the ”Layer Size(s)” column, the first number is the size of the first hidden layer and the second
number is the size of the second hidden layer. Layer sizes with only one number only have one hidden layer.

Learning Rates Layer Size(s)
0.0001, 0.0002, 0.0003, 0.0004, [350, 100], [350, 50], [350, 25],
0.0005, 0.0006, 0.0007, 0.0008, [100, 50], [100, 25], [50, 25],

0.0009, 0.001 [350], [100], [50], [25]
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Table S2. Best parameter combination from table S1 for each DNN type.

Model Type Predicted Parameter Layer Size(s) Learning Rate
DNN A1 s3 [350, 50] 0.0005
DNN A1 s6 [350, 25] 0.0004
DNN A1 g1 [350, 50] 0.0002
DNN A1 g5 [350, 100] 0.0001
DNN A1 g7 [100, 50] 0.0003
DNN A2 all [350, 100] 0.0001
DNN A3 all [350, 100] 0.0001
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Table S3. Mean squared error of the log10 permeability from the best models for each model type on the training split of ensembles. The ”Mean” column is the mean squared error, the ”STD” column is the standard
deviation of the squared error, and the ”R2” column is the R2 correlation. Bold numbers in the ”Perm” rows indicated the MSE and R2 with the best value.

DNN A1 DNN A2 DNN A3
Perm MSE STD R2 MSE STD R2 MSE STD R2

g1 2.85× 10−3 4.94× 10−3 0.991 2.33 × 10−3 4.63× 10−3 0.993 3.04× 10−3 5.01× 10−3 0.991
g5 5.19× 10−4 7.79× 10−4 0.998 1.13× 10−3 1.67× 10−3 0.997 4.65 × 10−4 6.72× 10−4 0.999
g7 6.88 × 10−5 1.52× 10−4 1.0 1.90× 10−4 3.41× 10−4 0.999 1.15× 10−4 1.99× 10−4 1.0
s3 1.60× 10−4 2.53× 10−4 1.0 3.35× 10−4 5.08× 10−4 0.999 6.43 × 10−5 1.04× 10−4 1.0
s6 3.71× 10−2 6.76× 10−2 0.886 1.20 × 10−2 1.98× 10−2 0.963 1.43× 10−2 2.29× 10−2 0.956
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Table S4. Mean squared error of the log10 permeability from the best models for each model type on the test split of ensembles (i.e. mean of squared error distribution from Figure 6. The ”Mean” column is the mean
squared error, the ”STD” column is the standard deviation of the squared error, and the ”R2” column is the R2 correlation. Bold numbers in the ”Perm” rows indicated the MSE and R2 values for the best performance.

DNN A1 DNN A2 DNN A3
Perm MSE STD R2 MSE STD R2 MSE STD R2

g1 1.98× 10−2 4.11× 10−2 0.933 1.85 × 10−2 3.87× 10−2 0.937 2.02× 10−2 3.77× 10−2 0.931
g5 5.94 × 10−3 1.71× 10−2 0.981 7.21× 10−3 1.57× 10−2 0.977 6.21× 10−3 1.61× 10−2 0.981
g7 1.21 × 10−3 4.74× 10−3 0.996 1.32× 10−3 4.67× 10−3 0.996 1.3× 10−3 5.59× 10−3 0.996
s3 1.9 × 10−3 3.17× 10−3 0.995 1.96× 10−3 2.96× 10−3 0.994 2.38× 10−3 3.88× 10−3 0.993
s6 1.88× 10−1 2.99× 10−1 0.498 1.68× 10−1 2.73× 10−1 0.551 1.64 × 10−1 2.59× 10−1 0.563
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2.2 Figures

Figure S1. The architecture of a single neuron.

6



Supplementary Material

Figure S2. Box plots of correlation coefficient (a) and root mean squared error (b) between the 60
synthetic true permeability and the corresponding estimated permeability from 537 ensemble members
using Ensemble Smoother (ES), with different relative observation errors.
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Figure S3. Training loss of the best DNN A1 model per permeability parameter. Each plot is an individual
DNN A1 model. The blue line is the loss from the training set and the orange line is the loss from the
validations set. The x-axis is the epoch number. The y-axis is the model loss (MSE). A) training loss for
the DNN A1 model estimating the s3 permeability parameter; B) training loss for the DNN A1 model
estimating the s6 permeability parameter; C) training loss for the DNN A1 model estimating the g1
permeability parameter; D) training loss for the DNN A1 model estimating the g5 permeability parameter;
E) training loss for the DNN A1 model estimating the g7 permeability parameter.
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Figure S4. Training loss of best DNN A2 model over the training period. The blue line is the loss from
the training set and the orange line is the loss from the validations set. The x-axis is the epoch number. The
y-axis is the model loss (MSE). The loss is the average of the loss of the five permeability parameters.
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Figure S5. One-to-one plot of the DNN A1 model permeability estimation compare to the real estimation
for the train set. Each plot is an individual DNN A1 model estimation for the given permeability parameter.
Each dot represents a realization from the test set of ensembles. The x-axis is the log10 real permeability
value, the y-axis is the estimated permeability value from the model. The red line is the one-to-one line.
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Figure S6. One-to-one plot of the DNN A2 model permeability estimation compare to the real estimation
for the train set. Each plot is the DNN A2 model estimation for the given permeability parameter. Each dot
represents a realization from the test set of ensembles. The x-axis is the log10 real permeability value, the
y-axis is the estimated permeability value from the model. The red line is the one-to-one line.
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Figure S7. One-to-one plot of the DNN A1 model permeability estimation compare to the real estimation
for the test set. Each plot is an individual DNN A1 model estimation for the given permeability parameter.
Each dot represents a realization from the test set of ensembles. The x-axis is the log10 real permeability
value, the y-axis is the estimated permeability value from the model. The red line is the one-to-one line.
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Figure S8. One-to-one plot of the DNN A2 model permeability estimation compare to the real estimation
for the test set. Each plot is the DNN A2 model estimation for the given permeability parameter. Each dot
represents a realization from the test set of ensembles. The x-axis is the log10 real permeability value, the
y-axis is the estimated permeability value from the model. The red line is the one-to-one line.
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