Figure S1 (appendix)

Figure S1. Experimental setup for triplicate anoxic peat circle sediment (pH 4.4) slurries utilized for acetate 16S rRNA stable isotope probing and concomitant analysis of denitrification products and intermediates. Incubations with peat circle sediments containing endogenous nitrate were supplemented with 400 μ M of unlabeled [¹²C]- or double-labelled [¹³C]-acetate. Two sets of incubation were set up, one with and one without acetylene (10%-v/v) in the headspace. Only incubations without acetylene were used for total RNA extraction and stable isotope probing approach to identify labeled taxa, i.e. to account for drift of unlabeled RNA into 'heavy' fractions with a characteristic buoyant density of [¹³C]-labeled RNA. Acetylene treatments served as process controls to determine denitrification derived N₂ production via the acetylene inhibition method. Nitrate and acetate were re-fed during the course of the incubation upon consumption (see Figure 1). Incubation was at an *in situ* relevant temperature of 15 °C in the dark. Microcosms were rigorously shaken manually twice a day.

Figure S2. Acetate consumption (A) and CO_2 production (B) in anoxic incubations of ¹²C-acetate supplemented cryoturbated peat circle sediments without and with acetylene. Arrows indicate time of acetate supplementation. Shaded and non-shadeded areas highlight different periods of nitrate consumption (Figure 1). Values are means ± standard deviation of triplicate incubations.

Figure S3 (appendix)

Figure S3. Methane concentrations in anoxic incubations of acetate supplemented cryoturbated peat circle sediments without (A) and with (B) acetylene (Figure 1). Arrows indicate time of acetate supplementation. Values are means \pm standard deviation of triplicate incubations.

Figure S4 (appendix)

Figure S4. Ammonium concentrations in anoxic incubations of acetate and supplemented cryoturbated peat circle sediments without (A) and with (B) acetylene (Figure 1). Values are means ± standard deviation of triplicate incubations.

Figure S5. DGGE gels of heavy and light fractions of all replicates (1-3) and treatments. 1 – heaviest fraction; 5 – lightest fraction; M – marker; P – positive control.

A: Heavy and light fractions from all three replicates of t0 samples.

B: Heavy and light fractions from all three replicates of ¹²C-acetate treatments.

C: Heavy and light fractions from all three replicates of ¹³C-acetate treatments.

Figure S6. Mean relative abundance of bacterial phyla (>2% of relative abundance in at least one sample) delineated from analysis of density resolved 16S rRNA retrieved from cryoturbated peat circle sediments prior to and after 16 days of anoxic incubation (see Figure 1). Values are means of triplicate incubations. Heavy (H) and Light (L) indicate fractions representing ¹³C-labeled and unlabeled 16S rRNA after isopycnic centrifugation (see Materials and Methods for further details) where sequences have been retrieved from. ¹³C- and ¹²C-acetate refer to treatments with ¹³C- and ¹²C-acetate, respectively. t₀ indicates peat circle sediments prior to incubation.

Relative phyla abundance [%]

Figure S7. Mean relative abundance of bacterial classes (>2% of relative abundance in at least one sample) delineated from analysis of density resolved 16S rRNA retrieved from cryoturbated peat circle sediments prior to and after 16 days of anoxic incubation (see Figure 1). Values are means of triplicate incubations (A) or indicate single replicates (B). Heavy (H) and Light (L) indicate fractions representing ¹³C-labeled and unlabeled 16S rRNA after isopycnic centrifugation (see Materials and Methods for further details) where sequences have been retrieved from. ¹³C- and ¹²C-acetate refer to treatments with ¹³C- and ¹²C-acetate, respectively. t₀ indicates peat circle sediments prior to incubation.

Figure S8. Mean relative abundance of archaeal families (A) and genera (B) delineated from analysis of density resolved 16S rRNA retrieved from cryoturbated peat circle sediments prior to and after 16 days of anoxic incubation (see Figure 1). Values are means of triplicate incubations. Sample code: H and L indicate heavy and light fractions, respectively; 0, ¹³C- and ¹²C- represent peat circle sediments prior to incubation, ¹³C- and ¹²C-acetate treatments, respectively.

Figure S9. Principal Coordinates Analysis (PCoA) based on Bray-Curtis dissimilarity calculated from relative abundance data of archaeal species-level OTUs from density resolved 16S rRNA retrieved from cryoturbated peat circle sediments prior to (t_0) and after 16 days of anoxic incubation (see Figure 1).

Table S1. Correlation table of network analysis on bacterial genus level using SparCC algorithm (Figure 5A). Significant correlations of *Burkholderia-Caballeronia-Paraburkholderia* and *Rhodanobacter* spp. affiliating sequences are shown.

Genus-level Taxon 1	Genus-level Taxon 2	Correlation	p-value
Burkholderia_Caballeronia_Paraburkholderia	37_13_ge	-0.5083	0.0297
Burkholderia_Caballeronia_Paraburkholderia	Acetobacteraceae_unclassified	0.8124	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Acidipila	0.4913	0.0495
Burkholderia_Caballeronia_Paraburkholderia	Acidobacteriaceae_(Subgroup_1)_unclassified	0.5336	0.0396
Burkholderia_Caballeronia_Paraburkholderia	Acidocella	0.5518	0.0198
Burkholderia_Caballeronia_Paraburkholderia	Acidothermus	0.7593	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Aquisphaera	0.9022	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Asticcacaulis	0.5135	0.0396
Burkholderia_Caballeronia_Paraburkholderia	B12_WMSP1_ge	0.7295	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Bacteroidota_unclassified	0.6141	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Burkholderiaceae_unclassified	0.5359	0.0198
Burkholderia_Caballeronia_Paraburkholderia	Candidatus_Nostocoida	0.9138	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Candidatus_Ovatusbacter	-0.5198	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Conexibacter	0.8632	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Frankiales_unclassified	0.7387	0.0297
Burkholderia_Caballeronia_Paraburkholderia	Gemmata	0.5819	0.0198
Burkholderia_Caballeronia_Paraburkholderia	Gemmatimonadaceae_unclassified	0.6845	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Gemmatimonas	0.4979	0.0495
Burkholderia_Caballeronia_Paraburkholderia	Granulicella	0.6775	0.0198
Burkholderia_Caballeronia_Paraburkholderia	IMCC26256_ge	0.5904	0.0198
Burkholderia_Caballeronia_Paraburkholderia	Isosphaeraceae_unclassified	0.9104	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Jatrophihabitans	0.7261	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Legionella	-0.6195	0.0297
Burkholderia_Caballeronia_Paraburkholderia	Mucilaginibacter	0.5412	0.0297
Burkholderia_Caballeronia_Paraburkholderia	Novosphingobium	0.5869	0.0396
Burkholderia_Caballeronia_Paraburkholderia	Occallatibacter	0.7075	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Pajaroellobacter	-0.5466	0.0396
Burkholderia_Caballeronia_Paraburkholderia	Pedosphaeraceae_ge	0.6921	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Phenylobacterium	0.6286	0.0396
Burkholderia_Caballeronia_Paraburkholderia	RCP2_54_ge	0.7328	0.0198
Burkholderia_Caballeronia_Paraburkholderia	Rhodanobacter	0.6159	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Rickettsiaceae_unclassified	-0.5811	0.0297
Burkholderia_Caballeronia_Paraburkholderia	Solirubrobacteraceae_unclassified	0.6492	0.0297
Burkholderia_Caballeronia_Paraburkholderia	Solirubrobacterales_unclassified	0.487	0.0396
Burkholderia_Caballeronia_Paraburkholderia	Subgroup_13_ge	0.5191	0.0198
Burkholderia_Caballeronia_Paraburkholderia	Subgroup_2_ge	0.8369	0.0198
Burkholderia_Caballeronia_Paraburkholderia	Tepidisphaerales_unclassified	0.7028	0.0099
Burkholderia_Caballeronia_Paraburkholderia	Tundrisphaera	0.8681	0.0099
Burkholderia_Caballeronia_Paraburkholderia	WD2101_soil_group_ge	0.5906	0.0396
Burkholderia_Caballeronia_Paraburkholderia	WPS_2_ge	0.6062	0.0099

Table S1 (continued). Correlation table of network analysis on bacterial genus level using SparCC algorithm (see Figure 5A). Significant correlations of *Burkholderia-Caballeronia-Paraburkholderia* and *Rhodanobacter* spp. affiliating sequences are shown.

Genus-level Taxon 1	Genus-level Taxon 2	Correlation	p-value
Rhodanohacter	67 14 ge	0 7189	0 0099
Phodanobacter	Acatabacteracease unclassified	0.6052	0.0000
Rhoddhobdeter		0.0932	0.0099
Rhodanobacter	Acidicalaus	0.6046	0.0297
Rhodanobacter	Acidimicrobila_unclassified	0.8753	0.0099
Rhodanobacter	Acidiphilium	0.565	0.0396
Rhodanobacter	Acidipila	0.8737	0.0099
Rhodanobacter	Acidobacteriaceae_(Subgroup_1)_unclassified	0.8053	0.0099
Rhodanobacter	Acidothermus	0.8716	0.0099
Rhodanobacter	AD3 ge	0.8077	0.0099
Bhodanobacter		-0 5117	0.0297
Phodanobacter	Anucrococcus	0.715	0.0207
Rhoddhobdeter	Aquispinaera	0.713	0.0198
Rhodanobacter	Asticcacaulis	0.6313	0.0198
Rhodanobacter	B10_SB3A_ge	-0.7032	0.0099
Rhodanobacter	Bacteria_unclassified	0.6577	0.0495
Rhodanobacter	Bacteroidota_unclassified	0.6721	0.0297
Rhodanobacter	Bauldia	0.6846	0.0198
Rhodanobacter	Beijerinckiaceae unclassified	0.6147	0.0198
Rhodanobacter	Bryobacter	0.6329	0.0198
Rhodanobacter	Burkholderia Caballeronia Paraburkholderia	0.6159	0.0099
Rhodanobacter	Burkholderigsogo upslassified	0.0133	0.0000
		0.7073	0.0099
Rhodanobacter	Candidatus_Solibacter	0.5734	0.0099
Rhodanobacter	Caulobacteraceae_unclassified	0.7944	0.0099
Rhodanobacter	Chloroflexi_unclassified	-0.4809	0.0495
Rhodanobacter	Conexibacter	0.8495	0.0297
Rhodanobacter	Cutibacterium	-0.6078	0 0099
Phodanobacter		0.8542	0.0000
Rhadanabastar	Edenhohastar	0.8045	0.0000
	Eddphobdcter	0.801	0.0099
Rhodanobacter	Enterobacteriaceae_unclassified	-0.6285	0.0198
Rhodanobacter	Frankiales_unclassified	0.8164	0.0099
Rhodanobacter	Gaiellales_unclassified	0.7761	0.0099
Rhodanobacter	Galbitalea	0.8499	0.0099
Rhodanobacter	Gemmataceae unclassified	0.4778	0.0396
Rhodanobacter	Granulicella	0.9096	0.0099
Bhodanobacter	Iamia	0.8828	0.0099
Rhodanobacter		0.0020	0.0000
Rhoddhobdeter		0.6993	0.0099
	isosphaeraceae_unclassified	0.6114	0.0198
Rhodanobacter	Janthinobacterium	-0.7784	0.0099
Rhodanobacter	Jatrophihabitans	0.7414	0.0297
Rhodanobacter	KF_JG30_B3_ge	0.7278	0.0198
Rhodanobacter	Lawsonella	-0.56	0.0198
Rhodanobacter	Leuconostoc	-0.4848	0.0297
Rhodanobacter	Micropepsaceae unclassified	0.8316	0.0099
Rhodanobacter	Mucilaainibacter	0.784	0.0099
Rhodanobacter	Occallatibacter	0.9115	0.0099
Bhadanabactar	Paracoccuc	0.5115	0.0000
		-0.5079	0.0495
Rnodanobacter	Peaospnaeraceae_ge	0.8516	0.0099
Rhodanobacter	Phenylobacterium	0.////	0.0297
Rhodanobacter	Pseudolabrys	0.6153	0.0099
Rhodanobacter	Pseudomonas	-0.5055	0.0396
Rhodanobacter	RCP2_54_ge	0.8097	0.0099
Rhodanobacter	Roseiarcus	0.7133	0.0198
Rhodanobacter	Saccharimonadales unclassified	0.455	0.0396
Rhodanobacter	Solirubrobacteraceae unclassified	0.8568	0.0198
Phodanobacter	Solirubrobacterales unclassified	0.8588	0.0000
Rhadanabastar	Solir ubrobacter ales_ unclossified	0.0500	0.0000
Rhodunobacter		0.4842	0.0297
knoaanobacter	Stapnylococcus	-0.5193	0.0198
Rhodanobacter	Subgroup_13_ge	0.5406	0.0396
Rhodanobacter	Subgroup_2_ge	0.8628	0.0495
Rhodanobacter	Tepidisphaerales_unclassified	0.6729	0.0297
Rhodanobacter	Thermoleophilia_unclassified	0.7003	0.0099
Rhodanobacter	Tundrisphaera	0.6042	0.0099
Rhodanobacter	uncultured	0.8411	0.0099
Bhodanobacter	uncultured ge	0.8642	0.0000
Dhadanahastar	Verruppmierobiogogo unclossified	0.0042	0.0005
	veri ucomicropiaceae_unciassifiea	-0.5151	0.0297
Khodanobacter	WD2101_soil_group_ge	0.6635	0.0297
Rhodanobacter	WD260_ge	0.6857	0.0099
Rhodanobacter	WPS_2_ge	0.8374	0.0099
Rhodanobacter	Xanthobacteraceae unclassified	0.5919	0.0495