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Bivariate Focus-Based Multifractal Analysis - Supplementary Material 

1. Thresholding of BFMF Networks 

Each connectivity matrix was thresholded in order to exclude spurious connections. The ΔΗ15 

network consisted only of connections that passed all four multifractality tests. The H(2)  network 

included links that passed the power-law, detrended cross-correlation and H(2) part of the shuffling 

tests. The phase-randomization and ΔΗ15 part of shuffling tests were not taken into consideration for 

the thresholding of H(2) networks because some of the connections could show monofractal (i.e. 

successful power-law, detrended cross-correlation and H(2) part of the shuffling tests) but not 

multifractal (negative phase-randomization and ΔΗ15 part of shuffling tests) character. Moreover, the 

applied thresholding scheme did not consider the dichotomous model of extrinsic/intrinsic 

multifractality. The reason is that even though the majority of extrinsic multifractality is due to 

autocorrelation effects, a part of it can still be due to interdependence between the different brain 

regions. The connectivity matrices yielded graphs in which the weight of the rejected edges was set 

to 0. 

 The analysis showed that a large part (59.0±5.9%) of the observed functional connections had 

intrinsic scale-free characteristics. Figure S1 illustrates two H(2) networks, each responsible for 

either the intrinsic or extrinsic multifractal connections. There is a clear distinction between the two 

networks (the correlation between the two networks expressed in Pearson’s r =-0.95, p<0.001). The 

within-RSNs connections tend to have stronger intrinsic multifractality, while the between-RSNs 

links show a higher degree of extrinsic multifractality. Despite the statistically significant 

anticorrelation between the two networks and the more than 50% intrinsically multifractal 

connections per subject, the probability of a connection being intrinsically multifractal did not reach 

significance at a population level (Figure S2). Nevertheless, the same high probability of intrinsic 

multifractality within-DMN, within-DA and between DMN-DA connections is observed, as in 

unthresholded networks (Figure 4). 

 

 



Scale-free Coupled Dynamics in Brain Networks Captured by Bivariate Focus-Based Multifractal Analysis - Supplementary Material 

 

 2 

 

Figure S1. Z-scores of intrinsic and extrinsic thresholded H(2) network connections. The intrinsic 

network consisted of the H(2) values of connections that passed the bivariate-univariate Hurst 

exponent relationship test, connections that failed were represented as 0. The extrinsic network 

consisted of the H(2) values of connections that failed the bivariate-univariate Hurst exponent 

relationship test, connections that passed were represented as 0. Subsequently, the Z-scores of the 

connections were calculated. Z-scores represent deviation from the population average and their 

values are indicated by the color bar. The edges serve as the between-RSNs connections with color 

representing the strength of the connection. The outer ring comprises of the 6 RSNs with the color 

indicating the Z-score of within-RSN connections. 

 

Figure S2. Probabilistic network of intrinsic multifractality after thresholding. The probability was 

obtained through the Z-score of the original bivariate Hurst exponent of the connection compared to 

the surrogate distribution created in the bivariate-univariate Hurst exponent relationship test. The 

edges serve as the between-RSNs connections with color representing the population average 

probability of the connection showing intrinsic multifractality. The outer ring comprises of the 6 

RSNs with the color indicating the population average probability of within-RSNs connections being 

intrinsically multifractal. 

The two thresholded networks showed statistically significant different patterns (the 

correlation between the two networks expressed in Pearson’s r = -0.73, p<0.01) (Figure S3). The 

H(2) network showed higher values for within-RSNs connections when compared to the ΔΗ15 

network. The contrary was observed in the between-RSNs connectivity, with that of ΔΗ15 network 

being stronger, although in less extent. 
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Figure S3. Z-scores of constructed networks using thresholded H(2) and ΔΗ15 as functional 

connectivity estimators. Z-scores represent deviation from the population average and their values are 

indicated by the color bar. The edges serve as the between-RSNs connections with color representing 

the strength of the connection. The outer ring comprises of the 6 RSNs with the color indicating the 

population average strength of the within-RSNs connections. 

 

Finally, Table S1 summarizes the statistical tests applied in the thresholded networks. For the 

H(2) network, the between- and within- RSNs W values of 0.50 and 0.35 were acquired respectively, 

indicating moderate concordance among subjects. Friedman tests revealed a significant main effect of 

localization (p<0.0001). 40% of the between-RSNs and 33.3% of the within-RSNs of the pairwise 

post hoc comparisons appeared significant. The W values of the ΔH15 network were 0.37 and 0.41 for 

between- and within- RSNs connections, suggesting moderate subject agreement. The Friedman test 

indicated a significant main effect of localization for the ΔH15 values of functional connections 

(p<0.0001), while 26.7% of the between-RSNs and within-RSNs paired comparisons were 

successful.  

Table S1. Results of Kendall’s W, success rate for individual paired comparisons after correction and 

Friedman test for thresholded H(2) and ΔH15 for between- and within- RSNs. 

  Kendall’s        

W 

Paired difference 

test success rate 

Friedman Test  

p 

H(2) 

between-RSNs 0.50 40% 

<0.0001 

within-RSNs 0.35 33.3% 

ΔH15 

ΔH15 between-RSNs 0.37 26.7% 

ΔH15within-RSNs 0.41 26.7% 
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2. Pearson Correlation and Mutual Information Analysis 

To verify if BFMF captures novel aspects of brain functional connectivity, we generated reference 

networks using two widely used estimators of functional connectivity, Pearson correlation (r) and 

Mutual Information (MI) (van den Heuvel and Fornito, 2014). 

Pearson correlation is a widely used measure of FC and per se it can identify linear 

interdependence between two processes. The Pearson correlation coefficients of all possible channel 

pairs were calculated using built-in MATLAB functions. Similarly to BFMF analysis, r was 

evaluated in non-overlapping windows of size s, with values of s set equal to those used in BFMF. 

The signal was bridge-detrended in each temporal window before calculating r. Finally, the mean r 

was calculated for every s. 

Mutual Information is another frequently used measure of FC that captures both linear and 

nonlinear dependencies (Shannon, 1948; Steuer et al., 2002). This is achieved by measuring the 

deviation of the estimated joint probability distribution of two variables, in our case 

neurophysiological signals, from a theoretical joint probability distribution assuming independence. 

If those two joint probability distributions correspond (i.e. the two time series are indeed statistically 

independent), then the value of MI between these time series is 0. Positive values of MI represent 

statistically dependent time series with higher values corresponding to more substantial 

interdependence (Steuer et al., 2002). Since MI identifies the interdependence of two processes based 

on their empirical probability distribution, it is considered a model-free measure, unlike estimators 

obtained by BFMF analysis. Despite the theoretically simple calculation of MI, this is a 

computationally-intensive process with the constant emergence of new innovative algorithms (Jiang 

et al., 2010). In this study, we implemented the second algorithm proposed in (Jiang et al. 2010) for 

estimating zero-lag Mutual Information. Pairwise calculation of MI from the bridge-detrended EEG 

datasets was performed according to the same non-overlapping windowing scheme and time scales as 

in Pearson correlation analysis.  

The Pearson- and MI-derived networks were investigated with the same statistical pipeline as 

the BFMF-derived networks. In that, we calculated Kendall’s coefficient of concordance (W), p-value 

of Friedman test and post-hoc paired tests (paired sample t-test if distributions were normal, 

Wilcoxon signed-rank if at least one distribution was non-normal, normality was evaluated by 

Lilliefors test) corrected by Benjamini-Hochberg correction (Yekutieli and Benjamini, 2001). 

As seen in Figure S4, there is a scale-independence between the scales 64, 128, 256 and 512 

in the Pearson networks. The results agree with Bassett et al. (Bassett et al., 2006), where a 

frequency-independence for the mean degree, clustering coefficient and minimum path length in 

brain networks was found. On the other hand, scales 16 and 32 did not show that scale-independence, 

possibly because they represent higher (beta and gamma) EEG bands, which are not prominent 

during eyes-closed resting-state. As to the Mutual Information analysis, each scale showed different 

network architecture, except scales 128 and 256 (Figure S5). This polymorphism in MI networks 

validates our belief that the commonly used functional connectivity estimators are prone to a priori 

assumptions. Both r and MI networks demonstrated higher subject concordance and regional 

variability compared to the BFMF networks, indicating the influence of oscillatory dynamics. Table 

S2 summarizes the statistical results of our analysis of r and MI networks. 
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Figure S4. Z-scores of constructed networks using Pearson correlation as functional connectivity 

estimators for six different scales. The edges serve as the between-RSNs connections with color 

representing the population average strength of the connection. The outer ring comprises of the 6 

RSNs with the color indicating the population average strength of the within-RSNs connections. 
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comprises of the 6 RSNs with the color indicating the population average strength of the within-

RSNs 

 

Figure S5. Z-scores of constructed networks using Mutual Information as functional connectivity 

estimators for six different scales. The edges serve as the between-RSNs connections with color 

representing the population average strength of the connection. The outer ring comprises of the 6 

RSNs with the color indicating the population average strength of the within-RSNs connections. 
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Table S2. Results of Kendall’s W, success rate for individual paired comparisons after correction and 

Friedman test for Pearson correlation (r) and Mutual Information (MI) for between- and within- 

RSNs. 

  Kendall’s        

W 

Paired difference 

test success rate 

Friedman Test  

p 

Scale 16 

r between-RSNs 0.96 94.3% 

< 0.0001 

r within-RSNs 0.89 86.7% 

MI between-RSNs 0.95 89.5% 

MI within-RSNs 0.78 80% 

Scale 32 

r between-RSNs 0.98 96.2% 

< 0.0001 

r within-RSNs 0.93 86.7% 

MI between-RSNs 0.78 77.1% 

MI within-RSNs 0.66 73.3% 

Scale 64 

r between-RSNs 0.97 98.1% 

< 0.0001 

r within-RSNs 0.93 86.7% 

MI between-RSNs 0.78 78.1% 

MI within-RSNs 0.72 80% 

Scale 128 

r between-RSNs 0.98 98.1% 

< 0.0001 

r within-RSNs 0.95 86.7% 

MI between-RSNs 0.80 77.1% 

MI within-RSNs 0.68 80% 
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Scale 256 

r between-RSNs 0.98 97.1% 

< 0.0001 

r within-RSNs 0.95 86.7% 

MI between-RSNs 0.83 76.2% 

MI within-RSNs 0.71 80% 

Scale 512 

r between-RSNs 0.98 98.1% 

< 0.0001 

r within-RSNs 0.95 86.7% 

MI between-RSNs 0.86 79% 

MI within-RSNs 0.72 80% 
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