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1 SUPPLEMENTARY NOTE

1.1 Complete methods and derivations

Multi-trait association modeling and hypothesis testing

To simplify the formulae, we assume the phenotypes are standardized to have mean zero and variance one,
and genotypes are centered to have mean zero. k traits Y1, ...Yk are dependent variables in MANOVA. Now
we have n individuals with these k phenotypes Yn×k and a biallelic marker gn×1. Then the association
between the group of k phenotypes and the marker can be expressed as a multivariate regression

Yn×k = gn×1β
′
k×1 + en×k, (S1)

which can be tested via MANOVA for the null hypothesis

H0 : β = 0.

The estimates in the vector β̂ are known from GWA summary statistics. Below, we show how a MANOVA
test statistic can be obtained without knowing the original data.

Calculating the multi-trait association test statistic

First of all, it is known that MANOVA test statistics, such as Pillai’s trace, Wilk’s lambda, etc., are all
equivalent to an F statistic for a single factor analysis (Olson, 1976), which is what we conduct in GWAS.
When sample size is large, the F test can be approximated by a χ2 test. Let t = [t1, ..., tk]

′ be the vector of
single-trait t-test statistics across the k phenotypes on the marker g, and R∗ ≡ Cor(t) = Var(t). If R∗ is
available, the test statistic

T 2 = t′R∗−1t, (S2)

which asymptotically follows a χ2 distribution with k degrees of freedom under the null hypothesis.

Let R represent the phenotypic correlation matrix of the k phenotypes. According to Zhu et al. (2015),
R∗ = R when the phenotypes are measured on the same set of individuals. When the samples partially
overlap across different phenotypes, we derive the theory of shrinkage phenotypic correlation matrix below,
which links R and R∗. With the relationship between R and R∗, R∗ can be estimated using summary
association statistics.

Shrinkage estimate of the phenotypic correlation matrix

Given a specific variant in GWAS, for trait j and trait j′, let g be the genotypes of the overlapping n0
individuals between the two traits. For the n1 individuals with only trait j, we denote their genotypes as x;
and for the n2 individuals with only trait j′, we denote their genotypes as z. In another word, the genotypes
are [g′,x′]′ for trait j, and [g′, z′]′ for trait j′. If the cohorts for trait j and trait j′ are random samples of
the same population, we can assume the variances of the variant are same and denote it as σ2g . Assuming
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ḡ = x̄ = z̄ = 0, we have
g′g

n0
≈ x′x

n1
≈ z′z

n2
≈ σ2g (S3)

Let tj = β̂j/
√
σ̂2
β̂j

and tj′ = β̂j′/
√
σ̂2
β̂j′

be the test statistics of phenotypes j and j′ against the variant,

σ2j and σ2j′ be the phenotypic variances, we have

tj =
β̂j√
σ̂2
β̂j

=
(g′g + x′x)

−1
[g′,x′]yj√

σ̂2rj (g′g + x′x)−1
≈

[g′,x′]yj√
σ2jσ

2
g(n0 + n1)

,

where σ̂2rj is the estimated residual variance in univariate regression. As the effect of a single variant is
usually small, we can approximate σ̂2rj by σ2j . Similarly,

tj′ ≈
[g′, z′]yj′√
σ2j′σ

2
g(n0 + n2)

Therefore,

R∗j,j′ = Cor(tj , tj′) = Cov(tj , tj′) (S4)

≈ Cov

 [g′,x′]yj√
σ2jσ

2
g(n0 + n1)

,
[g′, z′]yj′√
σ2j′σ

2
g(n0 + n2)


=

[g′,x′] Cov(yj ,yj′) [g′, z′]
′√

σ2jσ
2
j′σ

4
g(n0 + n1)(n0 + n2)

=

Rj,j′σjσj′ [g′,x′]

[
[0.7]I

0

] [
[0.7]g

z

]
√
σ2jσ

2
j′σ

4
x(n0 + n1)(n0 + n2)

=
Rj,j′g

′g√
σ4g(n0 + n1)(n0 + n2)

≈ n0√
(n0 + n1)(n0 + n2)

Rj,j′ , (S5)

Therefore, the correlation of t-statistics is a shrinkage version of the phenotypic correlation, with a factor
determined by the level of overlap. When no overlap individual exists across the phenotypes, the test
statistic automatically reduces to Fisher’s method of χ2 accumulation.

In practice, it should be noted that the estimation of R∗ using SNPs with Z-score thresholding may
generate biases (Zheng et al., 2018; Shen et al., 2020). Bivariate LD score regression intercept can reduce
such biases (Zheng et al., 2018) but still not the most efficient (Shen et al., 2020). Nevertheless, the small
biases in the estimation of R∗ would not alter the logic in this paper regarding different replication criteria.
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Conditional multivariate analysis (cMVA)

When cMVA is performed and p SNPs G = (G1, ..., Gp) are involved, we let Gn×p denote the genotype
matrix of these p SNPs with sample size of n. Then (S1) can be extended to:

yn×k = Gn×pβ
′
k×p + en×k. (S6)

The effects of SNP i conditional on the other p− 1 SNPs can be tested using

H0 : β̃i = 0. (S7)

where β̃i represents the conditional effects of SNP i on the k traits.

Similar to (S2), above hypothesis can be tested using conditional t-test statistics from (S6). For SNP i, if
the conditional t-test statistics t̃i = [t̃i1, ..., t̃ik]

′ in (S6) and their correlation matrix R̃∗i are available, then
we can obtain the test statistic

T̃ 2
i = t̃′iR̃

∗−1
i t̃i, (S8)

which also asymptotically follows a χ2 distribution with k degrees of freedom under (S7).

Next, we will show how to get t̃i and R̃∗i . As shown in literature (Yang et al., 2012; Ning et al., 2017),
the joint regression results asymptotically only depends on: (i) the covariance structure between variants
and traits; (ii) the LD structure between variants. Therefore we can approximate joint regression results
including t̃i using summary-level statistics from GWAS meta-analyses and a reference sample. In the
following sections, we will use Ai· and A·j to represent the ith row and the jth column of matrix A
respectively, and A′i· represents (Ai·)

′. For trait j, in single trait GWAS we have

b̂ij = (G′·iG·i)
−1G′·iyj ≈

Cov(Gi, Yj)

σ2gi

σ̂2
b̂ij

= σ2r,ij(G
′
·iG·i)

−1 ≈
σ2j
nσ2gi

,

where b̂ij and σ̂2
b̂ij

are the estimated marginal effect of variant i on trait j and its variance, σ2r,ij is the

residual variance and can be approximated by phenotypic variance σ2j , and σ2gi = Var(Gi).

The LD structure between SNPs can be approximated by a representative reference sample where
individual-level genotype data are available (Yang et al., 2012). Let W represents the nW × p genotypes of
the reference sample, then

G′G

n
≈ W′W

nW
≈ Var(G).
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Then the conditional effect of variant i on trait j

β̂cij =
[
(G′G)−1G′yj

]
i

≈
[
Var−1(G)Cov(G, Yj)

]
i

=
[
Var−1(G)

]
i·

[0.7]σ2g1 b̂1j
...

σ2gp b̂pj



=
1

σgi

[
Cor−1(G)

]
i·

[0.7]σ−1g1
. . .

σ−1gp


[0.7]σ2g1 b̂1j

...
σ2gp b̂pj



=
1

σgi

[
Cor−1(G)

]
i·

[0.7]σg1 b̂1j
...

σgp b̂pj

 ,
and its variance

σ̂2
β̂cij

=
[
σ2r,j(G

′G)−1
]
ii
≈
σ2j
n

[
Var−1(G)

]
ii

=
σ2j
nσ2gi

[
Cor−1(G)

]
ii
,

so that the conditional t-statistic

t̃ij =
β̂cij√
σ̂2
β̂cij

=

[
Cor−1(G)

]
i·[

Cor−1(G)
]
ii


[0.7]

√
nσg1 b̂1j
σj

...
√
nσgp b̂pj
σj



=

[
Cor−1(G)

]
i·[

Cor−1(G)
]
ii


[0.7]

b̂1j
σ̂
b̂1j

...
b̂pj
σ̂
b̂pj


=

[
Cor−1(G)

]
i·[

Cor−1(G)
]
ii

[0.7]t1j
...
tpj

 .
In another word, the conditional t-statistics of SNP i are linear combinations of the marginal t-statistics of
all the SNPs.

Now we focus on R̃∗i , which is the correlation matrix of the conditional t-statistics for SNP i. The
following derivation is an extension of (S4) to (S5). Here we use Gn0×p, Xn1×p and Zn2×p to represent the
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genotypes of shared individuals, trait j only individuals and trait j′ only individuals. Then the genotypes
for trait j are [G′,X′]′, and those for trait j′ are [G′,Z′]′. Similar to (S3), we have

G′G

n0
≈ X′X

n1
≈ Z′Z

n2
≈ Var(G) (S9)

To simplify symbols, we define Ap×p = Var−1(G), Bp×p = (G′G+X′X)−1 and Cp×p = (G′G+Z′Z)−1.
Then according to (S9),

B ≈ 1

n0 + n1
A, and C ≈ 1

n0 + n2
A.

Therefore for a pair of traits j and j′,

R̃∗i,jj′ = Cor(t̃ij , t̃ij′) = Cov(t̃ij , t̃ij′) (S10)

≈ Cov

Bi· [G
′,X′]yj√
σ2jBii

,
Ci· [G

′,Z′]yj′√
σ2j′Cii


=

Bi· [G
′,X′] Cov(yj ,yj′) [G′,Z′]

′
C′i·√

σ2jσ
2
j′BiiCii

=

Rj,j′σjσj′Bi· [G
′,X′]

[
[0.7]I

0

] [
[0.7]G

Z

]
C′i·√

σ2jσ
2
j′BiiCii

=
Rj,j′Bi·(G

′G)C′i·√
BiiCii

≈
n0Rj,j′√

(n0 + n1)(n0 + n2)
· Ai·A

−1A′i·
Aii

=
n0√

(n0 + n1)(n0 + n2)
Rj,j′ . (S11)

Above derivation shows that, for all SNPs, the conditional t-statistics correlation equals to the shrinkage
phenotypic correlation. This means our previous R̂∗ estimated from correlating GWAS t-statistics can be
used as R̃∗i for any SNP in cMVA.

Correlation replication approach

For SNPs discovered in MANOVA or cMVA, to replicate their potential pleiotropic pattern in the
replication sample, we develop a MC-based correlation replication approach. Following the k traits, p
SNPs model in (S6), we repeatedly drew βMC from p× k variate normal distribution N (β̂

c
, Σ̂), where

β̂
c

= (β̂c11, ...β̂
c
p1, β̂

c
12, ..., β̂

c
p2, ..., β̂

c
1k, ..., β̂

c
pk) is the vector of estimated conditional effects, and Σ̂ is an

estimate of Σ = Cov(β̂
c
). Because β̂

c
and the variances of {β̂cij} can be obtained from cMVA, we only
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need to estimate the elements of Cor(β̂
c
). Similar to (S10)-(S11),

Cor(β̂cij , β̂
c
i′j′) = Cor(t̃ij , t̃i′j′) = Cov(t̃ij , t̃i′j′)

≈ Cov

Bi· [G
′,X′]yj√
σ2jBii

,
Ci′· [G

′,Z′]yj′√
σ2j′Ci′i′


=

Bi· [G
′,X′] Cov(yj ,yj′) [G′,Z′]

′
C′i′·√

σ2jσ
2
j′BiiCi′i′

=

Rj,j′σjσj′Bi· [G
′,X′]

[
[0.7]I

0

] [
[0.7]G

Z

]
C′i′·√

σ2jσ
2
j′BiiCi′i′

=
Rj,j′Bi·(G

′G)C′i′·√
BiiCi′i′

=
n0Rj,j′√

(n0 + n1)(n0 + n2)
·
Ai·A

−1A′i′·√
AiiAi′i′

≈
n0Rj,j′√

(n0 + n1)(n0 + n2)
· Aii′√

AiiAi′i′
,

which means Cor(β̂
c
) ≈ R̂∗ ⊗ Cor−1(G), where ⊗ represents Kronecker product. Specifically, for

MANOVA where p = 1, Cor(β̂
c
) ≈ R̂∗.

With β̂
c

and Σ̂ for the discovery sample and the replication sample, we can draw βMC
disc and βMC

rep , then
compute their Pearson’s correlation coefficient ρ̂β and Kendall’s rank correlation coefficient

τ̂β =
2

k(k − 1)

∑
j<j′

sgn(βMC
j,disc − βMC

j′,disc) · sgn(βMC
j,rep − βMC

j′,rep).

After repeating the parametric sampling many times (10,000 times in this study), we can get an estimated
distribution of ρβ and τβ . The parametric bootstrap confidence intervals (CI) based on this distribution can
be used for inference. In this study, we reject the null hypothesis H0 : τβ = 0 (or ρβ = 0) if the lower
bound of the 95% CI of parametric bootstrap distribution is larger than 0.

Constructing the new phenotype score

We construct a new phenotype score as a linear combination of the original six phenotypes, via the
following multiple regression model,

g = Yb + ε, (S12)

which is equivalent to CCA.

Now we show how the coefficients estimates in (S12) can also be obtained without knowing the original
data. First of all, we derive the coefficients estimates of each swapped GWA simple regression model,

g = yjb
∗
j + ε∗j
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From the summary statistics, we know the estimates of the following GWA simple regression model,

yj = gβj + ej

i.e.

β̂j =
g′yj
g′g

=
g′yj

2nf(1− f)

assuming Hardy-Weinberg equilibrium (HWE), where f is the coding allele frequency of the marker. We
also have

b̂∗j =
y′jg

y′jyj
=

y′jg

n

As g′yj = y′jg, we have
b̂∗j = 2f(1− f)β̂j

Thereafter, when Var(yj) = 1 for all j, the estimates b̂ in (S12) can be calculated as

b̂ = (Y′Y)−1Db̂∗

= R−1b̂∗

where D is a diagonal matrix with the j-th element y′jyj . So that a new phenotype score can be defined as

S = Yb̂

The variance-covariance matrix of b̂ is

V (b̂) = σ2b (Y
′Y)−1

where

σ2b =
g′g − b̂′Db̂∗

n− k
=

2nf(1− f)− b̂′Db̂∗

n− k

The standard errors of b̂ can be obtained as the square roots of the diagonal elements of V (b̂), which can
be used for testing individual-phenotype associations with the SNP, corrected for all the other phenotypes
as covariates.

Estimating the genetic effect on the new phenotype score

In a replication cohort, the genetic effect of each SNP on the new phenotype score S can be tested via
simple regression of S on the allelic dosages g,

S = gβs + es. (S13)

Interestingly, without knowing the original data, we can obtain the estimate of βs in the discovery sample
using summary statistics. The following proof shows that β̂s always equals to Pillai’s trace V in (S1).
According to (S12), we have

b̂ = (Y′Y)−1Y′g,
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so that in (S13),

β̂s =
S′g

g′g
=

b̂′Y′g

g′g
=

g′Y(Y′Y)−1Y′g

g′g
. (S14)

In (S1), by definition, Pillai’s trace V = tr{(T− E) T−1}, where

E = Y′
{
I − g

(
g′g
)−1

g′
}

Y,

T = Y′Y. (S15)

Hence
T− E = Y′g

(
g′g
)−1

g′Y. (S16)

Combining with (S15) and (S16), we get

V = tr{(T− E) T−1}

= tr
{

(Y′g)(g′Y)(Y′Y)−1

g′g

}
= tr

{
(g′Y)(Y′Y)−1(Y′g)

g′g

}
= β̂s.

To get the standard error of β̂s, we should notice that given the numerical equivalence of V and β̂s, β̂s has
the same distribution as V . Denote F as the F-test statistic in (S1), V can be transformed as

F =
V 2/k

(1− V 2)/(n− k − 1)
.

After rearranging,

β̂s = V =
kF

(n− k − 1) + kF
.

As F ∼ F (k, n− k − 1), we have

β̂s = V ∼ Beta

(
k

2
,
n− k − 1

2

)
,

which is the exact distribution of β̂s. In practice, the standard error of β̂s can be obtained by Gaussian
approximation of the Beta distribution. If we translate the MANOVA p-value back to a 1 d.f. χ2 statistic C,
we have

β̂2s

Var(β̂s)
=

V 2

Var(β̂s)
≈ C.

Then we can compute the standard error of β̂s in the meta-GWAS population as V C−1/2.

8



Supplementary Material

Also, if we denote R2 as the coefficient of determination of both regressions (S12) and (S13) in the
discovery sample, we have

R2 =
β̂′sg
′gβ̂s

s′s
=

β̂2sg
′g

b̂′Y′Yb̂

=
β̂2sg

′g

g′Y(Y′Y)−1Y′Y(Y′Y)−1Y′g

=
β̂2sg

′g

g′Y(Y′Y)−1Y′g

=
β̂2s

{g′Y(Y′Y)−1Y′g} /(g′g)

=
β̂2s

β̂s

= β̂s

Therefore, Pillai’s trace V directly represents the proportion of the variance of S explained by the SNP.

1.2 Simulation settings

100 simulations were performed for each scenario. In each simulation, a discovery sample and a
replication sample were generated with one SNP and either 6 or 32 traits. For simplicity, the genotypes
g were simulated from a standard normal distribution. This provides the same sufficient statistics as if g
came from a binomial distribution B(2, f) assuming Hardy-Weinberg equilibrium, where f is the minor
allele frequency, while standardizing the mean from 2f to zero and variance from 2f(1− f) to one. In the
following sections, we denote the cross-phenotype effects of the SNP on the k traits as β = (β1, ..., βk),
and the residuals as ε = (ε1, ..., εk). As we demonstrate the replication strategies for single-SNP multi-trait
tests, linkage disequilibrium (LD) between SNPs are not considered in the simulation. In practice, the β
values are usually not the true causal effects but rather the tagged effects by the SNP due to its LD with the
causal variant(s).

Phenotypes y = βg + ε. To differentiate the cross-phenotype effects in discovery sample from those in
replication sample, we use βdisc and βrep to represent them respectively. Similarly, for residuals, we use
εdisc and εrep.

6 traits settings

For both the discovery and replication cohorts, genotypes and phenotypes for 2,000 independent
individuals were simulated. The real phenotypic correlation matrices ΣGIANT and ΣUKB between six
anthropometric traits (Body mass index, Height, Weight, Hip circumference, Waist-hip ratio and Waist
circumference) in GIANT and UKB respectively were involved in this simulation.

βdisc and βrep under different scenarios were simulated as below. (i) Null: βdisc = βrep = 0.
(ii) Unmatched multi-trait effects: βi,disc ∼ N(0, 10−4), i = 1, ..., 6, and βi,rep, i = 1, ..., 6 were
independently drawn from N(0, 10−4). (iii) Matched single-trait effect: β1,disc ∼ N(0, 2 × 10−4) and
β1,rep = β1,disc, while (β2,disc, ..., β6,disc) = (β2,rep, ..., β6,rep) = 0. (iv) Matched multi-trait effects:
βi,disc ∼ N(0, 10−4), i = 1, ..., 6, and βrep = βdisc.
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For ”consistent R” scenario, both εdisc and εrep follow N (0,ΣGIANT). For ”different R” scenario,
εdisc ∼ N (0,ΣGIANT) and εrep ∼ N (0,ΣUKB).

32 traits settings

For both the discovery and replication cohorts, genotypes and phenotypes for 4,000 independent
individuals were simulated. The real phenotypic correlation matrix ΣUKB, 32traits between 32 anthropometric
traits in UKB was involved in this simulation. The 32 traits are: Weight, Body mass index (BMI), Leg
fat-free mass (right), Leg predicted mass (left), Leg predicted mass (right), Arm fat percentage (left), Arm
fat percentage (right), Arm fat mass (left), Arm fat mass (right), Arm fat-free mass (right), Arm fat-free
mass (left), Arm predicted mass (left), Arm predicted mass (right), Trunk fat percentage, Trunk fat mass,
Trunk fat-free mass, Trunk predicted mass, Basal metabolic rate, Body fat percentage, Whole body fat mass,
Whole body fat-free mass, Whole body water mass, Leg fat percentage (left), Leg fat percentage (right),
Leg fat mass (left), Leg fat mass (right), Leg fat-free mass (left), Impedance of whole body, Impedance of
arm (left), Impedance of arm (right), Impedance of leg (left) and Impedance of leg (right).

βdisc and βrep under different scenarios were simulated as below. (i) Null: βdisc = βrep = 0.
(ii) Unmatched multi-trait effects: βi,disc ∼ N(0, 10−4), i = 1, ..., 32, and βi,rep, i = 1, ..., 32 were
independently drawn from N(0, 10−4). (iii) Matched single-trait effect: β1,disc ∼ N(0,×10−2) and
β1,rep = β1,disc, while (β2,disc, ..., β32,disc) = (β2,rep, ..., β32,rep) = 0. (iv) Matched multi-trait effects:
βi,disc ∼ N(0, 10−4), i = 1, ..., 32, and βrep = βdisc.

Because the phenotypic correlations between some traits among the 32 are very close to 1, we generated
two shrinkage correlation matrices based on the original ΣUKB, 32traits. The off-diagonal elements in the
first matrix Σ1 are half of their correspondences in ΣUKB, 32traits. Then R function ”nearPD” was used to
guarantee the matrix is positive-definite. In the second matrix Σ2, the 32 traits were split into two groups.
For group 1, the off-diagonal elements equal to their correspondences in Σ1; for group 2, the off-diagonal
elements equal to their correspondences in Σ1 plus random terms drawn from U(−0.1, 0.1); and for the
correlations between group 1 and 2, the elements equal to their correspondences in Σ1 divided by

√
3. Then

R function ”nearPD” was used to guarantee the matrix is positive-definite. For ”consistent R” scenario,
both εdisc and εrep follow N (0,Σ1). For ”different R” scenario, εdisc ∼ N (0,Σ1) and εrep ∼ N (0,Σ2).
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2 SUPPLEMENTARY TABLES AND FIGURES

2.1 Tables

Table S1. Summary of 24 loci detected and replicated by MANOVA for six anthropometric traits.

Top variant Nearest genes EA pG pU βS,G βS,U pS,U ρβ CI (ρβ) τβ CI (τβ)
rs2138275 FANK1 T 2.41E-08 1.96E-05 2.13E-04 2.24E-04 1.97E-08 *1 [0.88, 1] *1 [0.73, 1]
rs4646404 PEMT A 1.08E-10 1.54E-07 3.93E-04 3.26E-04 7.30E-10 *0.96 [0.72, 1] *1 [0.6, 1]
rs1458758 NUDT6 T 3.45E-13 9.39E-11 3.46E-04 4.03E-04 6.10E-14 *0.99 [0.87, 1] *0.96 [0.6, 1]
rs12744534 PRRX1 A 5.11E-11 5.10E-09 3.83E-04 3.36E-04 1.43E-11 *0.93 [0.7, 1] *0.73 [0.6, 1]
rs9991328 FAM13A T 1.38E-09 7.46E-15 3.11E-04 4.08E-04 1.23E-16 *0.98 [0.84, 1] *0.86 [0.46, 1]
rs972283 LOC105375508 A 1.74E-10 5.75E-12 2.99E-04 2.31E-04 2.22E-11 *0.86 [0.53, 1] *0.86 [0.46, 1]
rs10761785 REEP3 T 1.19E-10 5.47E-10 3.02E-04 3.58E-04 7.40E-13 *0.98 [0.88, 1] *0.86 [0.46, 1]
rs12454712 BCL2 T 2.64E-09 9.51E-09 3.11E-04 3.06E-04 8.36E-12 *0.93 [0.58, 1] *0.86 [0.46, 1]
rs905938 ZBTB7B T 8.09E-16 3.39E-11 5.33E-04 5.43E-04 7.73E-15 *0.99 [0.87, 1] *0.82 [0.46, 1]
rs2925979 CMIP T 5.88E-11 1.42E-11 2.96E-04 2.99E-04 2.72E-12 *0.90 [0.65, 1] *0.82 [0.46, 1]
rs6090583 EYA2 A 2.27E-11 1.07E-10 3.98E-04 3.58E-04 1.35E-10 *0.90 [0.74, 1] *0.60 [0.46, 1]
rs11974409 TBL2 A 6.94E-09 4.93E-06 2.19E-04 2.18E-04 4.17E-09 *0.96 [0.71, 1] *0.86 [0.33, 1]
rs17819328 TSEN2 T 8.58E-15 8.20E-12 4.96E-04 4.25E-04 6.69E-14 *0.87 [0.66, 1] *0.60 [0.33, 1]
rs1053593 HMGXB4 T 1.26E-09 4.62E-05 3.19E-04 2.00E-04 3.66E-05 *0.94 [0.5, 1] *0.60 [0.33, 1]
rs6780459 LOC107986108 A 8.30E-09 7.39E-06 2.51E-04 1.74E-04 1.06E-06 *0.87 [0.61, 1] *0.46 [0.33, 1]
rs486359 SLC22A3 C 2.05E-12 2.55E-11 3.26E-04 3.70E-04 1.27E-12 *0.86 [0.58, 1] *0.73 [0.2, 1]
rs1045241 TNFAIP8 T 1.24E-08 5.12E-06 2.96E-04 2.11E-04 3.80E-06 *0.88 [0.61, 1] *0.60 [0.2, 1]
rs12608504 IQCN A 5.15E-09 1.10E-07 2.89E-04 2.09E-04 7.96E-07 *0.70 [0.3, 0.99] *0.60 [0.2, 1]
rs11231693 FLRT1 A 1.21E-09 1.97E-05 2.35E-04 1.04E-04 5.03E-03 *0.59 [0.16, 1] *0.33 [0.2, 1]
rs2278557 PPP4C C 9.15E-10 2.21E-13 3.72E-04 4.58E-04 3.87E-15 *0.68 [0.01, 1] *0.69 [0.06, 1]
rs823114 NUCKS1 A 3.80E-08 9.99E-15 1.98E-04 1.81E-04 5.37E-07 0.61 [-0.25, 0.99] 0.60 [-0.07, 1]
rs459552 APC A 1.44E-08 1.45E-05 2.63E-04 2.24E-04 5.82E-07 0.73 [-0.19, 1] 0.60 [-0.07, 1]
rs4968164 VPS53 A 2.38E-08 5.00E-09 4.09E-04 2.09E-04 3.39E-05 0.44 [-0.07, 0.99] 0.46 [-0.07, 1]
rs9294260 LOC105377876 A 2.31E-08 2.47E-05 2.13E-04 5.24E-05 5.80E-03 0.18 [-0.49, 0.95] -0.20 [-0.47, 0.87]

EA, effect allele; pG, MANOVA p-value using summary statistics from GIANT; pU , MANOVA p-value using individual-level data from
UKB; βS,G, the estimated effect of the SNP on phenotype-score in GIANT; βS,U , the estimated effect of the SNP on phenotype-score in
UKB; pS,U , the p-value of phenotype-score replication in UKB; ρβ , the observed Pearson’s correlation coefficient of multivariate
marginal effects between GIANT and UKB, significant results are asterisked ; CI (ρβ), the 95% confidence interval of the empirical
distribution for ρβ ; τβ , the observed Kendall’s rank correlation coefficient of multivariate marginal effects between GIANT and UKB,
significant results are asterisked ; CI (τβ), the 95% confidence interval of the empirical distribution for τβ .

Table S2. Correlation matrix of the involved anthropometric traits in GIANT and UKB.
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2.2 Figures
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Figure S1. The performance of correlation replication when zero effect sizes exist. In this simulation,
we set the marginal effects of a SNP on 12 traits in discovery and replication sample to be same. We firstly
simulated 1,000 groups of marginal effects. In each group, 12 coefficients were drawn fromN (0, 1), which
are the marginal effects of a SNP on 12 traits in discovery and replication sample. Because the effect sizes
for each trait are same across two samples, the true τβ = 1. To simulate the impact of zero effect sizes
on the MC-based distribution of τβ in correlation test, we set the first several effect sizes as zero. In this
case, the true τβ = 1 still, but the MC-based distribution of τβ would change. We then simulated a SNP for
10,000 individuals. The SNP explains 0.1% variance of each trait. The phenotypic correlation matrix of
the 12 simulated traits is set as a block diagonal matrix, where the first 6× 6 is the estimated shrinkage
phenotypic correlation matrix from GIANT and the second 6× 6 is the phenotypic correlation matrix from
UKB. After this, we sampled one group of coefficients from the 1,000 groups and simulated phenotypes.
Then we performed the replication test and got the parametric bootstrap distribution of τβ . The x-axis
represents the number of traits on which the SNP has non-zero effect. The y-axis is the 5th percentile of
the MC-based distribution of τβ .
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Figure S2. The Kendall’s correlations of the estimated marginal effects from GIANT and UKB at
24 loci which are replicated by six-traits MVA. The panels are reordered in descending order according
to the lower bounds of their 95% CI in correlation replication. Each color represents one trait. There are
two parts in each panel. In both parts, the x-axis is the ranks of estimated marginal effect sizes in ascending
order from GIANT. For the upper part, the y-axis is the ranks from UKB. Therefore each dot represents the
rank in GIANT and UKB for one trait. The radius of shade around a dot is proportional to the standard error
of the estimated marginal effect. The standard errors are computed with variances in GIANT and UKB
using inverse variance weights. To facilitate visualization, a regression line is added. Its slope equals to the
Spearman’s correlation. The lower part shows the results based on 10,000 times Monte-Carlo simulations
(described in the Materials and Methods). The y-axis is the mean number of concordant pairs generated by
a trait. If a trait has a very low bar, it means the trait disturbs the consistency. The whiskers represent ± 1
times the standard deviation about the mean.
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Figure S3. The number of associated traits across different PhenoScanner p-value threshold. The
x-axis represents the p-value threshold in PhenoScanner; the y-axis is the number of associated traits plus
one in logarithmic scale. MANOVA (Red boxes): all the 317 loci replicated in UKB by MANOVA with top
SNP MANOVA p-value < 0.05/449; MANOVA + Cor (blue boxes): 32 loci (among the above 317 loci)
with the lower bounds of 95% CI higher or equal to 0.73 in correlation replication. The p-values in the
figure were computed from the Wilcoxon signed-rank test.
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